Lecture 7: 31 January, 2023

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

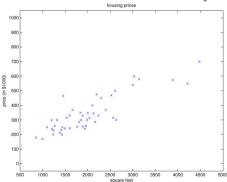
Data Mining and Machine Learning January–April 2023

Predicting numerical values

- Data about housing prices
- Predict house price from living area

- Scatterplot corresponding to the data
- Fit a function to the points

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:
• housing	prices



Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta = (\theta_0, \theta_1, \theta_2)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- Input x may have k features (x_1, x_2, \dots, x_k)
- By convention, add a dummy feature $x_0 = 1$
- For k input features

$$h_{\theta}(x) = \sum_{i=0}^{k} \theta_i x_i$$

Living area (feet 2)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

Finding the best fit line

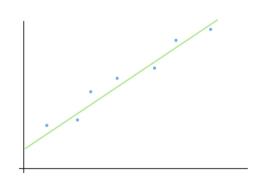
Training input is

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}$$

- Each input x_i is a vector $(x_i^1, ..., x_i^k)$
- Add $x_i^0 = 1$ by convention
- y_i is actual output
- How far away is our prediction $h_{\theta}(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$$

- Essentially, the sum squared error (SSE)
- Divide by n, mean squared error (MSE)



Minimizing SSE

■ Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

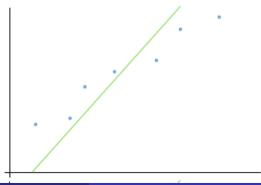
$$\blacksquare X = \begin{bmatrix}
1 & x_1^1 & \cdots & x_1^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & \ddots & & \\ 1 & x_i^1 & \cdots & x_n^k \\ & & \ddots & \\ & & & \ddots & \\ 1 & x_n^1 & \cdots & x_n^k
\end{bmatrix}, y = \begin{bmatrix}
y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_n
\end{bmatrix}$$

- Write θ as column vector, $\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$
- Minimize $J(\theta)$ set $\nabla_{\theta} J(\theta) = 0$

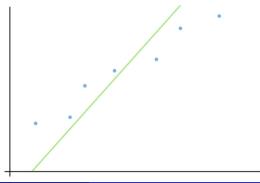
Minimizing SSE

- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta y)^{T} (X\theta y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta y)^T (X\theta y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} \left(\theta^T X^T X \theta y^T X \theta \theta^T X^T y + y^T y\right) = 0$
 - Check that $y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$
- Combining terms, $\frac{1}{2}\nabla_{\theta} \left(\theta^T X^T X \theta 2\theta^T X^T y + y^T y\right) = 0$
- After differentiating, $X^T X \theta X^T y = 0$
- Solve to get normal equation, $\theta = (X^T X)^{-1} X^T y$

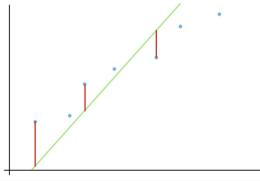
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



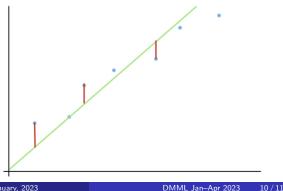
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



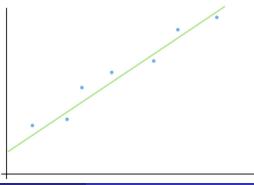
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



11 / 11

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan-Apr 2023

Gradient descent

■ How does cost vary with parameters

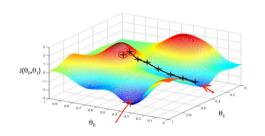
$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$
?

- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient

$$\bullet \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

■ For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{\partial}{\partial \theta_{i}} \frac{1}{2} (h_{\theta}(x) - y)^{2}
= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} (h_{\theta}(x) - y)
= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} \left[\left(\sum_{j=0}^{k} \theta_{j} x_{j} \right) - y \right] = (h_{\theta}(x) - y) \cdot x_{i}$$



Gradient descent

- For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_{\theta}(x_j) y_j) \cdot x_j^i$

Batch gradient descent

- Compute $h_{\theta}(x_j)$ for entire training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Adjust each parameter

$$\theta_{i} = \theta_{i} - \alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$$

$$= \theta_{i} - \alpha \cdot \sum_{j=1}^{n} (h_{\theta}(x_{j}) - y_{j}) \cdot x_{j}^{i}$$

Repeat until convergence

Stochastic gradient descent

- For each input x_j , compute $h_{\theta}(x_j)$
- Adjust each parameter $\theta_i = \theta_i \alpha \cdot (h_\theta(x_i) y) \cdot x_i^i$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely

Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $\mathbf{y}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- Want Maximum Likelihood Estimator (MLE) maximize

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$$

■ Instead, maximize log likelihood

$$\ell(\theta) = \log \left(\prod_{i=1}^{n} P(y_i \mid x_i; \theta) \right) = \sum_{i=1}^{n} \log(P(y_i \mid x_i; \theta))$$

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan-Apr 2023

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \arg\max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right] = \arg\min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

 Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood