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Supervised learning

A set of items

Each item is characterized by attributes (a1, a2, . . . , ak)

Each item is assigned a class or category c ← label

Given a set of examples, build a ML model.
Then predict category c ′ for a new item with attributes (a′1, a

′
2, . . . , a

′
k)

Examples provided are called training data

Aim is to learn a mathematical model that generalizes the training data

Model built from training data should extend to previously unseen inputs

Classification problem

Usually assumed to binary — two classes

Supervised learning as each training example has a category, i.e. it is labeled.
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Example: Loan application data set
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Basic assumptions

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

Build a model that does better than random guessing

In the loan data set, always saying Yes would be correct about 9/15 of the time

Performance should ideally improve with more training data

How do we evaluate the performance of a model?

Model is optimized for the training data. How well does it work for unseen data?

Don’t know the correct answers in advance to compare — different from normal software
verification
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The road ahead

Many different models

Decision trees

Probabilistic models — näıve Bayes classifiers

Models based on geometric separators

Support vector machines (SVM)

Neural networks

Important issues related to supervised learning

Evaluating models

Ensuring that models generalize well to unseen data

A theoretical framework to provide some guarantees

Strategies to deal with the training data bottleneck
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Decision trees

Play “20 Questions” with
the training data

Query an attribute

Partition the training
data based on the answer

Repeat until you reach a
partition with a uniform
category

Queries are adaptive

Different along each
path, depends on history
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Decision tree algorithm

A : current set of attributes

Non-uniform node — identical combination of
attributes, but different classes

Given attributes may not capture all the
criteria for classification. So two identical rows
in the training data may have different labels!
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Pick a ∈ A, create children
corresponding to resulting
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Stopping criterion:
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Decision trees

Tree is not unique

Which tree is better?

Prefer small trees

Explainability

Generalize better (see
later)

Finding smallest tree is
NP-complete — for any
definition of “smallest”

Instead, greedy heuristic
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Greedy heuristic

Goal: partition with uniform
category — pure leaf

Impure node — best prediction is
majority value

Minority ratio is impurity of the
training data-rows at a node.

For each attribute, compute
weighted average impurity of the
child nodes obtained by splitting
with respect to that attribute.

Weight of a child-node is the
fraction of training data-rows going
to it.

Heuristic: Choose the attribute
yielding minimum impurity
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A better impurity function

What is wrong with this impurity function?

Misclassification rate is linear

Impurity measure that increases more
sharply performs better, empirically

Intuitively, the green curve increases
the urgency of moving towards a
pure state.

Entropy — [Quinlan]

Gini index — [Breiman]

X-axis: fraction of data-rows at the node with label c = 1

Y-axis: impurity of the node
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Entropy

Information theoretic measure of
randomness

Minimum number of bits to transmit
a message — [Shannon]

n data items

n0 with c = 0, p0 = n0/n
n1 with c = 1, p1 = n1/n

Entropy
E = −(p0 log2 p0 + p1 log2 p1)

Minimum when p0 = 1, p1 = 0 or vice
versa — note, declare 0 log2 0 to be 0

Maximum when p0 = p1 = 0.5
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Gini Index

Measure of unequal distribution of
wealth

Economics — [Corrado Gini]

As before, n data items

n0 with c = 0, p0 = n0/n
n1 with c = 1, p1 = n1/n

Gini Index G = 1− (p20 + p21)

G = 0 when p0 = 0, p1 = 0 or v.v.
G = 0.5 when p0 = p1 = 0.5

Entropy curve is slightly steeper, but
Gini index is easier to compute

Decision tree libraries usually use Gini
index
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