Lecture 3: 12 January, 2023

Pranabendu Misra Slides by Madhavan Mukund

Data Mining and Machine Learning January–April 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Supervised learning

- A set of items
 - Each item is characterized by attributes (a_1, a_2, \ldots, a_k)
 - Each item is assigned a class or category $c \leftarrow label$
- Given a set of examples, build a ML model.
 Then predict category c' for a new item with attributes (a'₁, a'₂, ..., a'_k)

Supervised learning

- A set of items
 - Each item is characterized by attributes (a₁, a₂, ..., a_k)
 - Each item is assigned a class or category $c \leftarrow label$
- Given a set of examples, build a ML model.
 Then predict category c' for a new item with attributes (a'₁, a'₂,..., a'_k)
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs

Supervised learning

- A set of items
 - Each item is characterized by attributes (a_1, a_2, \ldots, a_k)
 - Each item is assigned a class or category $c \leftarrow label$
- Given a set of examples, build a ML model.
 Then predict category c' for a new item with attributes (a'₁, a'₂, ..., a'_k)
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs
- Classification problem
 - Usually assumed to binary two classes
- Supervised learning as each training example has a category, i.e. it is *labeled*.

Example: Loan application data set

ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random guessing
 - In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random guessing
 - In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

How do we evaluate the performance of a model?

- Model is optimized for the training data. How well does it work for unseen data?
- Don't know the correct answers in advance to compare different from normal software verification

Many different models

- Decision trees
- Probabilistic models naïve Bayes classifiers
- Models based on geometric separators
 - Support vector machines (SVM)
 - Neural networks

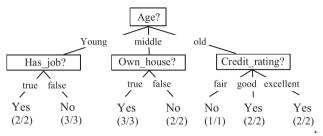
Many different models

- Decision trees
- Probabilistic models naïve Bayes classifiers
- Models based on geometric separators
 - Support vector machines (SVM)
 - Neural networks

Important issues related to supervised learning

- Evaluating models
- Ensuring that models generalize well to unseen data
 - A theoretical framework to provide some guarantees
- Strategies to deal with the training data bottleneck

 Play "20 Questions" with the training data

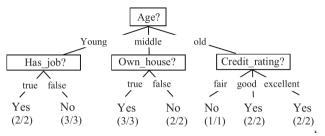


ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Lecture 3: 12 January, 2023

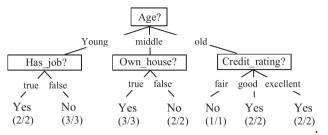
э

- Play "20 Questions" with the training data
- Query an attribute
 - Partition the training data based on the answer



ID	1 00	Has job	Own house	Credit rating	Class
ID	Age			_ 0	
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	falca	falsa	fair	No

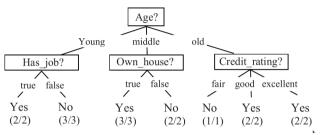
- Play "20 Questions" with the training data
- Query an attribute
 - Partition the training data based on the answer
- Repeat until you reach a partition with a uniform category



ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	falca	folco	fair	No

DMML Jan-Apr 2023 6 / 12

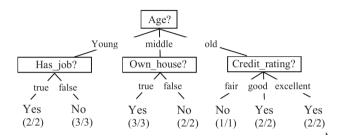
- Play "20 Questions" with the training data
- Query an attribute
 - Partition the training data based on the answer
- Repeat until you reach a partition with a uniform category
- Queries are adaptive
 - Different along each path, depends on history



ID	Age	Has job	Own house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Decision tree algorithm

A : current set of attributes



э

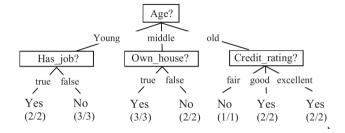
► < ∃ ►</p>

• • • • • • • • • • •

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

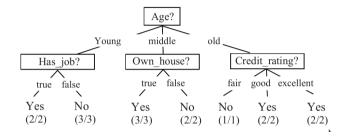


Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

If a leaf node is not uniform, use majority class as prediction

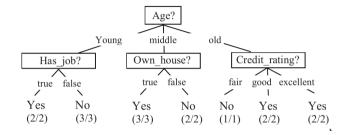


Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

If a leaf node is not uniform, use majority class as prediction

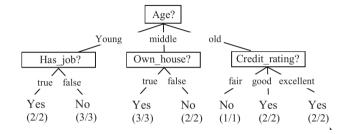


 Non-uniform node — identical combination of attributes, but different classes

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

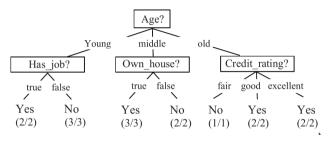
Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query
- If a leaf node is not uniform, use majority class as prediction



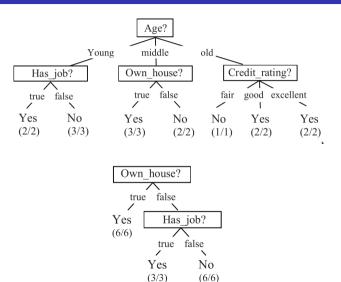
- Non-uniform node identical combination of attributes, but different classes
- Given attributes may not capture all the criteria for classification. So two identical rows in the training data may have different labels!

Tree is not unique



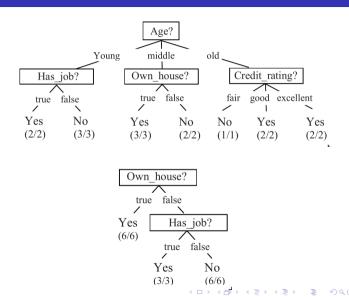
$$\begin{array}{c|c} \hline Own_house? \\ \hline true false \\ Yes \\ \hline (6/6) \\ \hline true false \\ Yes \\ (3/3) \\ \hline (6/6) \\ \hline (3/3) \\ \hline (6/6) \\ \hline (1 + 1) \\$$

- Tree is not unique
- Which tree is better?

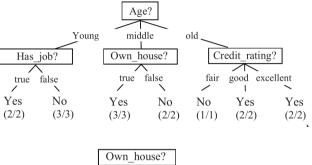


э

- Tree is not unique
- Which tree is better?
- Prefer small trees



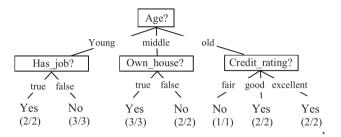
- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability

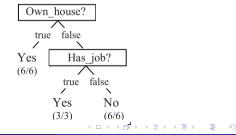


Own_house?
true false
Yes Has_job?
(6/6)
true false
Yes No
(3/3) (6/6)

$$\langle \Box \rangle \langle E \rangle \langle E \rangle \langle E \rangle \langle E \rangle \rangle \langle E \rangle \langle E \rangle \langle E \rangle \rangle \langle E \rangle$$

- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability
 - Generalize better (see later)

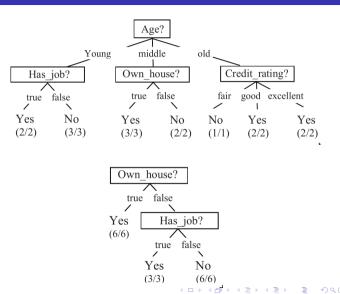




- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability
 - Generalize better (see later)

Unfortunately

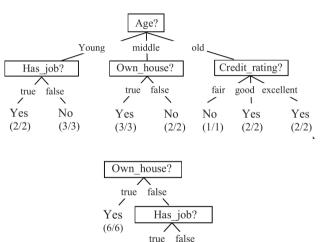
 Finding smallest tree is NP-complete — for any definition of "smallest"



- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability
 - Generalize better (see later)

Unfortunately

- Finding smallest tree is NP-complete — for any definition of "smallest"
- Instead, greedy heuristic



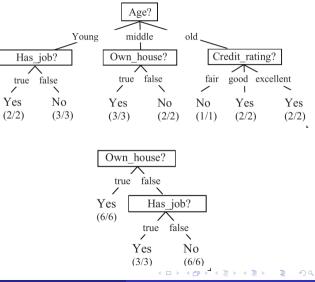
Yes

(3/3)

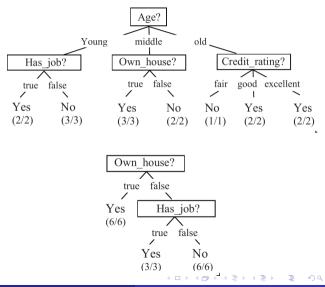
No

(6/6)

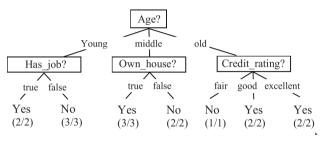
 Goal: partition with uniform category — pure leaf

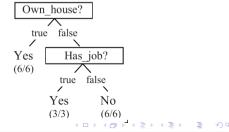


- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value

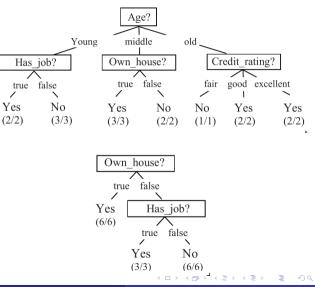


- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity of the training data-rows at a node.

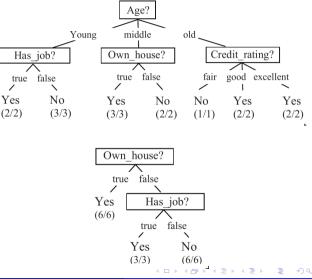




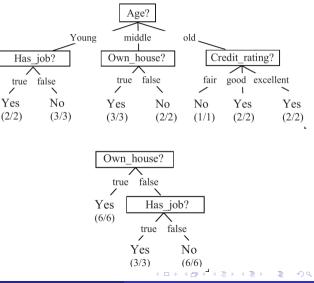
- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity of the training data-rows at a node.
- For each attribute, compute weighted average impurity of the child nodes obtained by splitting with respect to that attribute.



- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity of the training data-rows at a node.
- For each attribute, compute weighted average impurity of the child nodes obtained by splitting with respect to that attribute.
- Weight of a child-node is the fraction of training data-rows going to it.

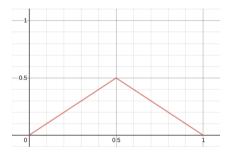


- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity of the training data-rows at a node.
- For each attribute, compute weighted average impurity of the child nodes obtained by splitting with respect to that attribute.
- Weight of a child-node is the fraction of training data-rows going to it.
- Heuristic: Choose the attribute yielding minimum impurity



What is wrong with this impurity function?

Misclassification rate is linear

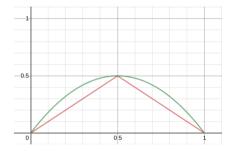


X-axis: fraction of data-rows at the node with label c = 1

Y-axis: impurity of the node

What is wrong with this impurity function?

- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
 - Intuitively, the green curve increases the urgency of moving towards a pure state.

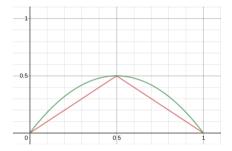


X-axis: fraction of data-rows at the node with label c = 1

Y-axis: impurity of the node

What is wrong with this impurity function?

- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
 - Intuitively, the green curve increases the urgency of moving towards a pure state.
- Entropy [Quinlan]

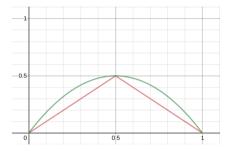


X-axis: fraction of data-rows at the node with label c = 1

Y-axis: impurity of the node

What is wrong with this impurity function?

- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
 - Intuitively, the green curve increases the urgency of moving towards a pure state.
- Entropy [Quinlan]
- Gini index [Breiman]



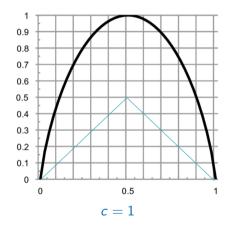
X-axis: fraction of data-rows at the node with label c = 1Y-axis: impurity of the node

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- = Entropy $E = -(p_0 \log_2 p_0 + p_1 \log_2 p_1)$

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - **n**₁ with c = 1, $p_1 = n_1/n$
- $E_{E} = -(p_0 \log_2 p_0 + p_1 \log_2 p_1)$
- Minimum when p₀ = 1, p₁ = 0 or vice versa note, declare 0 log₂ 0 to be 0
- Maximum when $p_0 = p_1 = 0.5$



э.

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$

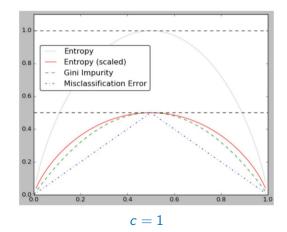
э

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - **n**₁ with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$

э

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - **n**₁ with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$

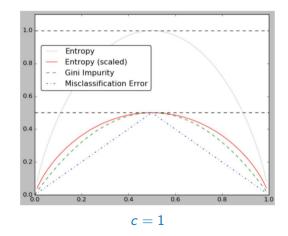
•
$$G = 0$$
 when $p_0 = 0$, $p_1 = 0$ or v.v.
 $G = 0.5$ when $p_0 = p_1 = 0.5$



э

▶ ∢ ⊒

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - **n**₁ with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$
- Entropy curve is slightly steeper, but Gini index is easier to compute



э

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - **n**₀ with c = 0, $p_0 = n_0/n$
 - **n**₁ with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$
- Entropy curve is slightly steeper, but Gini index is easier to compute
- Decision tree libraries usually use Gini index

