Lecture 7: 31 January, 2023

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Predicting numerical values

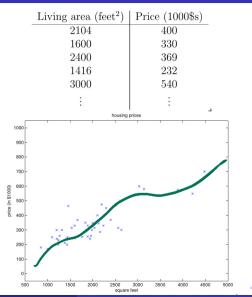
Data about housing prices)
Predict house price from living area	
1410 232	
3000 540	
· · · · · · · · · · · · · · · · · · ·	

Predicting numerical values

Data about housing prices

Predict house price from living area

- Scatterplot corresponding to the data
- Fit a function to the points



A richer set of input data

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

< □ > < 四

ш

э

▶ ∢ ⊒

- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta = (\theta_0, \theta_1, \theta_2)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

×,	×2	
Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	÷	
		L

_

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

Input x may have k features (x₁, x₂,..., x_k)

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:
	·	· ·

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)
 h_θ(x) = θ₀ + θ₁x₁ + θ₂x₂
- $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ Input x may have k features (x_1, x_2, \dots, x_k)
- By convention, add a dummy feature x₀ = 1

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:
•	·	· ·

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

- Input x may have k features (x_1, x_2, \dots, x_k)
 - By convention, add a dummy feature x₀ = 1
 - For k input features $h_{\theta}(x) = \sum_{i=0}^{k} \theta_i x_i$

$$\theta_0 \cdot x_0 = \theta_0 \cdot 1 = \theta_0$$

Living area (feet ²)	#bedrooms	Price $(1000\$s)$
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	÷	:

 $\mathbf{r} \cdot \cdot \mathbf{r} = (\mathbf{r} \cdot \mathbf{2}) | \mathbf{u} | \mathbf{r} \cdot \mathbf{r}$

Madhavan Mukund

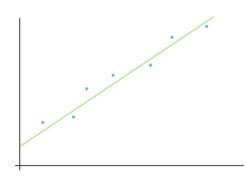
Lecture 7: 31 January, 2023

DMML Jan–Apr 2023 3 / 21

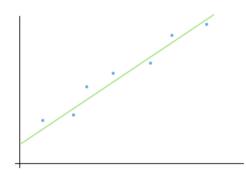
(10000)

4

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output

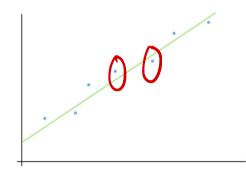


- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?



- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?
- Define a cost (loss) function

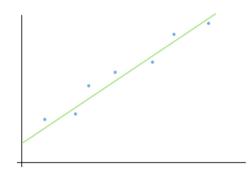
$$J(\theta) = \underbrace{\frac{1}{2}}_{=1}^{n} (h_{\theta}(x_i) - y_i)^2$$
pred char actual



- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?
- Define a cost (loss) function

 $J(\theta) = \int_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$

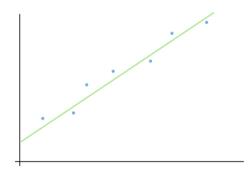
Essentially, the sum squared error (SSE)



- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?
- Define a cost (loss) function

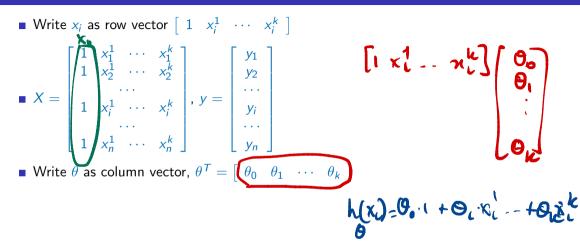
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$

- Essentially, the sum squared error (SSE)
- Divide by *n*, mean squared error (MSE)



• Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



• Write
$$x_i$$
 as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$
• $X = \begin{bmatrix} 1 & x_1^1 & \cdots & x_1^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & \ddots & \\ 1 & x_i^1 & \cdots & x_n^k \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$
• Write θ as column vector, $\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$
• $J(\theta) = \frac{1}{2} \sum_{i=1}^n (h_{\theta}(x_i) - y_i)^2 = \frac{1}{2} (X\theta - y)^T (X\theta - y)$
• SSE

• Write
$$x_i$$
 as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & 1 & x_2^1 & \cdots & x_n^k \\ & \ddots & & \\ 1 & x_n^1 & \cdots & x_n^k \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$

• Write θ as column vector, $\theta^{T} = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$

•
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = \frac{1}{2} (X\theta - y)^T (X\theta - y)$$

• Minimize $J(\theta)$ — set $\nabla_{\theta} J(\theta) = 0$

イロト イポト イヨト イヨト 二日

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

3

メロト メポト メヨト メヨト

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

$$(\chi_0)^{\top} = \theta^{\top} \chi^{\top}$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand, $\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - y^{T} X \theta - \theta^{T} X^{T} y + y^{T} y \right) = 0$

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand,
$$\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta - y^{T}X\theta - \theta^{T}X^{T}y + y^{T}y\right) = 0$$

• Check that $y^{T}X\theta = \theta^{T}X^{T}y = \sum_{i=1}^{n} h_{\theta}(x_{i}) \cdot y_{i}$

3

メロト メポト メヨト メヨト

 $J(\theta) = \frac{1}{2} (X\theta - y)^T (X\theta - y)$ • $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y)$ • To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$ • Expand, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta - y^{T}X\theta - \theta^{T}X^{T}y + y^{T}y\right) = 0$ • Check that $y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$ • Combining terms, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T} X^{T} X \theta - 2\theta^{T} X^{T} y + y^{T} \right) = 0$

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand,
$$\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta - y^{T}X\theta - \theta^{T}X^{T}y + y^{T}y\right) = 0$$

n

• Check that
$$y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$$

Combining terms, $\nabla_{\theta} (\theta^T X^T X \theta - 2\theta^T X^T y + y^T y) = 0$ After differentiating, $X^T X \theta - X^T y = 0$

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand, $\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - y^{T} X \theta - \theta^{T} X^{T} y + y^{T} y \right) = 0$

• Check that
$$y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$$

• Combining terms, $\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - 2 \theta^{T} X^{T} y + y^{T} y \right) = 0$

• After differentiating, $X^T X \theta - X^T y = 0$

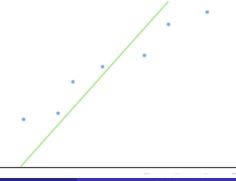
Solve to get normal equation, $\theta = (X^T X)^{-1} X^T y$

• Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution

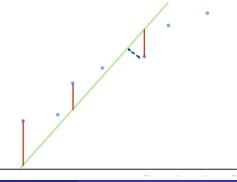
< A

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility

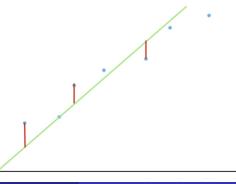
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess



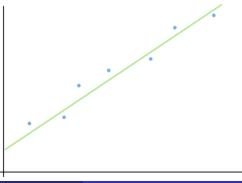
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line

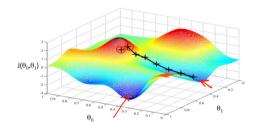


- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



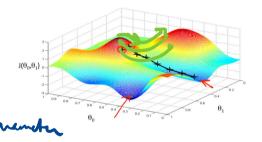
• How does cost vary with parameters $\theta = (\theta_0, \theta_1, \dots, \theta_k)$?

 $\theta = (\theta_0, \theta_1, \dots, \theta_k)?$ $\blacksquare \text{ Gradients } \frac{\partial}{\partial \theta_i} J(\theta)$



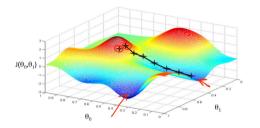
- How does cost vary with parameters
 - $\theta = (\theta_0, \theta_1, \dots, \theta_k)?$ $\blacksquare \text{ Gradients } \frac{\partial}{\partial \theta_i} J(\theta)$

■ Adjust each parameter against gradient ■ $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$ ↓ User defined parameter

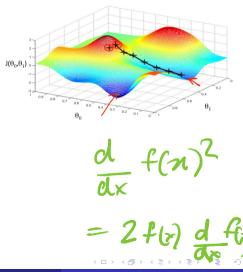


- Adjust each parameter against gradient

 θ_i = θ_i − α ∂/∂θ_i J(θ)
- For a single training sample (x, y) $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_\theta(x) - y)^2$

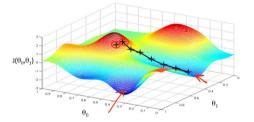


- Adjust each parameter against gradient
 θ_i = θ_i − α ∂/∂θ_i J(θ)
- For a single training sample (x, y) $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$ $= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y)$



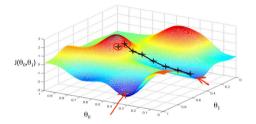
- Adjust each parameter against gradient
 θ_i = θ_i − α ∂/∂θ_i J(θ)
- For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2 = 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y) = (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} \left[\left(\sum_{j=0}^k \theta_j x_j - y \right) \right]$$



- Adjust each parameter against gradient
 θ_i = θ_i − α ∂/∂θ_i J(θ)
- For a single training sample (x, y)

$$\begin{aligned} \frac{\partial}{\partial \theta_i} J(\theta) &= \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2 \\ &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y) \\ &= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} \left[\left(\sum_{j=0}^k \theta_j x_j \right) - y \right] \\ &= (h_{\theta}(x) - y) \cdot x_i \\ &= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} \left[\left(\sum_{j=0}^k \theta_j x_j \right) - y \right] \\ &= (h_{\theta}(x) - y) \cdot x_i \\ &= (h_{\theta}(x) - y) \cdot x_i$$



• For a single training sample
$$(x, y)$$
, $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

3

メロト メタト メヨト メヨト

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set,
$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$$

< □ > < 向

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$

Batch gradient descent

■ Compute h_θ(x_j) for entire training set {(x₁, y₁), ..., (x_n, y_n)}

$$\theta_{i} = \theta_{i} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

= $\theta_{i} - q \cdot \sum_{j=1}^{n} (h_{\theta}(x_{j}) - y_{j}) \cdot x_{j}^{i}$

Repeat until convergence

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

Over the entire training set,
$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_{\theta}(x_j) - y_j) \cdot x_j^i$$

Batch gradient descent

- Compute *h*_θ(*x*_j) for entire training set {(*x*₁, *y*₁), . . . , (*x*_n, *y*_n)}
- Adjust each parameter

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

= $\theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$

Repeat until convergence

Stochastic gradient descent

For each input x_j , compute $h_{\theta}(x_j)$

• Adjust each parameter —
$$\theta_i = \theta_i - \alpha \cdot (h_{\theta}(x_j) - y) \cdot x_j^i$$

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set,
$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{i=1}^n (h_\theta(x_i) - y_i) \cdot x_i^i$$

Batch gradient descent

- Compute *h*_θ(*x*_j) for entire training set {(*x*₁, *y*₁), . . . , (*x*_n, *y*_n)}
- Adjust each parameter $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$ $= \theta_i - \alpha \cdot \sum_{j=1}^{n} (h_{\theta}(x_j) - y_j) \cdot x_j^i$
- Repeat until convergence

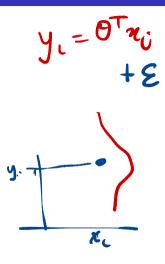
Stochastic gradient descent

- For each input x_j , compute $h_{\theta}(x_j)$
- Adjust each parameter $\theta_i = \theta_i - \alpha \cdot (h_{\theta}(x_j) - y) \cdot x_j^i$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$



э

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- Want Maximum Likelihood Estimator (MLE) maximize $\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- Want Maximum Likelihood Estimator (MLE) maximize $\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$
- Instead, maximize log likelihood

$$\ell(\theta) = \log\left(\prod_{i=1}^{n} P(y_i \mid x_i; \theta)\right) = \sum_{i=1}^{n} \log(P(y_i \mid x_i; \theta))$$

Madhavan Mukund

Lecture 7: 31 January, 2023

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}}$

э

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

DMML Jan-Apr 2023 11 / 21

э

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood

$$\ell(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}\right)$$

э

< □ > < 同

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$
• Log likelihood (assuming natural logarithm)
 $\ell(\theta) = \sum_{i=1}^n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}\right) = n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y-\theta^T x_i)^2}{2\sigma^2}$
 $f \cdot g$
 $u \cdot f \cdot h \cdot g$

э

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}\right) = n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

• To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ

э

N 4 E N

< □ > < 向

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}\right) = n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

• To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ

• Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \operatorname*{arg\,max}_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

э

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}\right) = n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

• To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ

• Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \arg \max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^{\mathsf{T}} x_i)^2 \right] = \arg \min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^{\mathsf{T}} x_i)^2 \right]$$

э

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta^T x_i)^2}{2\sigma^2}}\right) = n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^{n} \frac{(y-\theta^T x_i)^2}{2\sigma^2}$$

• To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ

• Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \arg \max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^{\mathsf{T}} x_i)^2 \right] = \arg \min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^{\mathsf{T}} x_i)^2 \right]$$

 Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood