
Lecture 7: 31 January, 2023

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning
January–April 2023

Predicting numerical values

Data about housing prices

Predict house price from living area

Scatterplot corresponding to the data

Fit a function to the points

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 2 / 21

Predicting numerical values

Data about housing prices

Predict house price from living area

Scatterplot corresponding to the data

Fit a function to the points

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 2 / 21

~

Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
✓ = (✓0, ✓1, ✓2)

h✓(x) = ✓0 + ✓1x1 + ✓2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

h✓(x) =
kX

i=0

✓ixi

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 3 / 21

Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
✓ = (✓0, ✓1, ✓2)

h✓(x) = ✓0 + ✓1x1 + ✓2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

h✓(x) =
kX

i=0

✓ixi

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 3 / 21

X, X2

<-

Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
✓ = (✓0, ✓1, ✓2)

h✓(x) = ✓0 + ✓1x1 + ✓2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

h✓(x) =
kX

i=0

✓ixi

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 3 / 21

Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
✓ = (✓0, ✓1, ✓2)

h✓(x) = ✓0 + ✓1x1 + ✓2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

h✓(x) =
kX

i=0

✓ixi

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 3 / 21

o

Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
✓ = (✓0, ✓1, ✓2)

h✓(x) = ✓0 + ✓1x1 + ✓2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

h✓(x) =
kX

i=0

✓ixi

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 3 / 21

X =

00.x0 =00.1 =0.

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction h✓(xi) from
the true answer yi?

Define a cost (loss) function

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 4 / 21

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction h✓(xi) from
the true answer yi?

Define a cost (loss) function

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 4 / 21

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction h✓(xi) from
the true answer yi?

Define a cost (loss) function

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 4 / 21

00

⑧
↑Predictoractual

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction h✓(xi) from
the true answer yi?

Define a cost (loss) function

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 4 / 21

I

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction h✓(xi) from
the true answer yi?

Define a cost (loss) function

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 4 / 21

Minimizing SSE

Write xi as row vector
⇥
1 x1i · · · xki

⇤

X =

2

6666664

1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

3

7777775
, y =

2

6666664

y1
y2
· · ·
yi
· · ·
yn

3

7777775

Write ✓ as column vector, ✓T =
⇥
✓0 ✓1 · · · ✓k

⇤

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2 =

1

2
(X✓ � y)T (X✓ � y)

Minimize J(✓) — set r✓ J(✓) = 0

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 5 / 21

Minimizing SSE

Write xi as row vector
⇥
1 x1i · · · xki

⇤

X =

2

6666664

1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

3

7777775
, y =

2

6666664

y1
y2
· · ·
yi
· · ·
yn

3

7777775

Write ✓ as column vector, ✓T =
⇥
✓0 ✓1 · · · ✓k

⇤

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2 =

1

2
(X✓ � y)T (X✓ � y)

Minimize J(✓) — set r✓ J(✓) = 0

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 5 / 21

[ix] - - ntu) orj 17
Ok

⑤

h(x)=0.1 +0.5. . - touie

Minimizing SSE

Write xi as row vector
⇥
1 x1i · · · xki

⇤

X =

2

6666664

1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

3

7777775
, y =

2

6666664

y1
y2
· · ·
yi
· · ·
yn

3

7777775

Write ✓ as column vector, ✓T =
⇥
✓0 ✓1 · · · ✓k

⇤

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2 =

1

2
(X✓ � y)T (X✓ � y)

Minimize J(✓) — set r✓ J(✓) = 0

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 5 / 21

10 -

007)
ho(al

Gopi--hoti]

Minimizing SSE

Write xi as row vector
⇥
1 x1i · · · xki

⇤

X =

2

6666664

1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

3

7777775
, y =

2

6666664

y1
y2
· · ·
yi
· · ·
yn

3

7777775

Write ✓ as column vector, ✓T =
⇥
✓0 ✓1 · · · ✓k

⇤

J(✓) =
1

2

nX

i=1

(h✓(xi)� yi)
2 =

1

2
(X✓ � y)T (X✓ � y)

Minimize J(✓) — set r✓ J(✓) = 0

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 5 / 21

Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX)�1XT y

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 6 / 21

Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX)�1XT y

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 6 / 21

(X0)
T
=p+x+

Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX)�1XT y

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 6 / 21

-

Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX)�1XT y

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 6 / 21

C

"17
To

-
-
X azz

2az

Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX)�1XT y

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 6 / 21

0x<

Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX)�1XT y

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 6 / 21

xy

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

".
.

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

Minimizing SSE iteratively

Normal equation ✓ = (XTX)�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX)�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 7 / 21

Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 8 / 21

Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 8 / 21

*

↳ user defined parameter

Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 8 / 21

Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2

= 2 · 1
2
(h✓(x)� y)

@

@✓i
(h✓(x)� y)

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 8 / 21

⑥ df(n)2
=If() f()

Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2

= 2 · 1
2
(h✓(x)� y)

@

@✓i
(h✓(x)� y)

= (h✓(x)� y)
@

@✓i

2

4

0

@
kX

j=0

✓jxj

1

A� y

3

5

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 8 / 21

①
01Xi

Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2

= 2 · 1
2
(h✓(x)� y)

@

@✓i
(h✓(x)� y)

= (h✓(x)� y)
@

@✓i

2

4

0

@
kX

j=0

✓jxj

1

A� y

3

5 = (h✓(x)� y) · xi

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 8 / 21

Gradient descent

For a single training sample (x , y),
@

@✓i
J(✓) = (h✓(x)� y) · xi

Over the entire training set,
@

@✓i
J(✓) =

nX

j=1

(h✓(xj)� yj) · x ij

Compute h✓(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

✓i = ✓i � ↵
@

@✓i
J(✓)

= ✓i � ↵ ·
nX

j=1

(h✓(xj)� yj) · x ij

Repeat until convergence

For each input xj , compute h✓(xj)

Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij
Faster progress for large batch size

May oscillate indefinitely

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 9 / 21

Gradient descent

For a single training sample (x , y),
@

@✓i
J(✓) = (h✓(x)� y) · xi

Over the entire training set,
@

@✓i
J(✓) =

nX

j=1

(h✓(xj)� yj) · x ij

Compute h✓(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

✓i = ✓i � ↵
@

@✓i
J(✓)

= ✓i � ↵ ·
nX

j=1

(h✓(xj)� yj) · x ij

Repeat until convergence

For each input xj , compute h✓(xj)

Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij
Faster progress for large batch size

May oscillate indefinitely

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 9 / 21

Gradient descent

For a single training sample (x , y),
@

@✓i
J(✓) = (h✓(x)� y) · xi

Over the entire training set,
@

@✓i
J(✓) =

nX

j=1

(h✓(xj)� yj) · x ij

Batch gradient descent

Compute h✓(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

✓i = ✓i � ↵
@

@✓i
J(✓)

= ✓i � ↵ ·
nX

j=1

(h✓(xj)� yj) · x ij

Repeat until convergence

For each input xj , compute h✓(xj)

Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij
Faster progress for large batch size

May oscillate indefinitely

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 9 / 21

Gradient descent

For a single training sample (x , y),
@

@✓i
J(✓) = (h✓(x)� y) · xi

Over the entire training set,
@

@✓i
J(✓) =

nX

j=1

(h✓(xj)� yj) · x ij

Batch gradient descent

Compute h✓(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

✓i = ✓i � ↵
@

@✓i
J(✓)

= ✓i � ↵ ·
nX

j=1

(h✓(xj)� yj) · x ij

Repeat until convergence

Stochastic gradient descent

For each input xj , compute h✓(xj)

Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij

Faster progress for large batch size

May oscillate indefinitely

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 9 / 21

Gradient descent

For a single training sample (x , y),
@

@✓i
J(✓) = (h✓(x)� y) · xi

Over the entire training set,
@

@✓i
J(✓) =

nX

j=1

(h✓(xj)� yj) · x ij

Batch gradient descent

Compute h✓(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

✓i = ✓i � ↵
@

@✓i
J(✓)

= ✓i � ↵ ·
nX

j=1

(h✓(xj)� yj) · x ij

Repeat until convergence

Stochastic gradient descent

For each input xj , compute h✓(xj)

Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij

Pros and cons

Faster progress for large batch size

May oscillate indefinitely

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 9 / 21

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

y =0Tnc

"I!

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

I

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

#
&

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2

=
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆

= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆

= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

->

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆

= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood (assuming natural logarithm)

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆
= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

*

0
Un

75
-

-
luf +lng

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood (assuming natural logarithm)

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆
= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood (assuming natural logarithm)

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆
= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood (assuming natural logarithm)

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆
= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#
= argmin

✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi)

2

2�2 =
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

Log likelihood (assuming natural logarithm)

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi)

2

2�2

◆
= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi)2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi)
2

#
= argmin

✓

"
nX

i=1

(yi � ✓T xi)
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 11 / 21

