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Predicting numerical values

Data about housing prices

Predict house price from living area

Scatterplot corresponding to the data

Fit a function to the points
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Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
✓ = (✓0, ✓1, ✓2)

h✓(x) = ✓0 + ✓1x1 + ✓2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

h✓(x) =
kX

i=0

✓ixi
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Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i )

Add x0i = 1 by convention

yi is actual output

How far away is our prediction h✓(xi ) from
the true answer yi?

Define a cost (loss) function

J(✓) =
1

2

nX

i=1

(h✓(xi )� yi )
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
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Minimizing SSE

Write xi as row vector
⇥
1 x1i · · · xki

⇤

X =

2

6666664

1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

3

7777775
, y =

2

6666664

y1
y2
· · ·
yi
· · ·
yn

3

7777775

Write ✓ as column vector, ✓T =
⇥
✓0 ✓1 · · · ✓k

⇤

J(✓) =
1

2

nX

i=1

(h✓(xi )� yi )
2 =

1

2
(X✓ � y)T (X✓ � y)

Minimize J(✓) — set r✓ J(✓) = 0
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Minimizing SSE

J(✓) =
1

2
(X✓ � y)T (X✓ � y)

r✓ J(✓) = r✓
1
2(X✓ � y)T (X✓ � y)

To minimize, set r✓
1
2(X✓ � y)T (X✓ � y) = 0

Expand, 1
2r✓ (✓TXTX✓ � yTX✓ � ✓TXT y + yT y) = 0

Check that yTX✓ = ✓TXT y =
nX

i=1

h✓(xi ) · yi

Combining terms, 1
2r✓ (✓TXTX✓ � 2✓TXT y + yT y) = 0

After di↵erentiating, XTX✓ � XT y = 0

Solve to get normal equation, ✓ = (XTX )�1XT y
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Minimizing SSE iteratively

Normal equation ✓ = (XTX )�1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX )�1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?
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Gradient descent

How does cost vary with parameters
✓ = (✓0, ✓1, . . . , ✓k)?

Gradients
@

@✓i
J(✓)

Adjust each parameter against gradient

✓i = ✓i � ↵
@

@✓i
J(✓)

For a single training sample (x , y)
@

@✓i
J(✓) =

@

@✓i

1

2
(h✓(x)� y)2
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Gradient descent
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@
kX
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1

A� y

3
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Gradient descent

How does cost vary with parameters
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Gradients
@
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3

5 = (h✓(x)� y) · xi
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Gradient descent

For a single training sample (x , y),
@

@✓i
J(✓) = (h✓(x)� y) · xi

Over the entire training set,
@

@✓i
J(✓) =

nX

j=1

(h✓(xj)� yj) · x ij

Compute h✓(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

✓i = ✓i � ↵
@

@✓i
J(✓)

= ✓i � ↵ ·
nX

j=1

(h✓(xj)� yj) · x ij

Repeat until convergence

For each input xj , compute h✓(xj)

Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij
Faster progress for large batch size

May oscillate indefinitely
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Adjust each parameter —
✓i = ✓i � ↵ · (h✓(xj)� y) · x ij

Faster progress for large batch size

May oscillate indefinitely
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Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

 
nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

y =0Tnc

"I!



Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

 
nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

I



Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

 
nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21



Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = ✓T xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = ✓T xi

Model gives us an estimate for ✓, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(✓) =
nY

i=1

P(yi | xi ; ✓)

Instead, maximize log likelihood

`(✓) = log

 
nY

i=1

P(yi | xi ; ✓)
!

=
nX

i=1

log(P(yi | xi ; ✓))

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan–Apr 2023 10 / 21

#
&



Log likelihood and SSE loss

yi = N (µi ,�
2), so P(yi | xi ; ✓) =

1p
2⇡�2

e�
(y�µi )

2

2�2

=
1p
2⇡�2

e�
(y�✓T xi )

2

2�2

Log likelihood

`(✓) =
nX

i=1

log

✓
1p
2⇡�2

e�
(y�✓T xi )

2

2�2

◆

= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � ✓T xi )2

2�2

To maximize `(✓) with respect to ✓, ignore all terms that do not depend on ✓

Optimum value of ✓ is given by

✓̂MSE = argmax
✓

"
�

nX

i=1

(yi � ✓T xi )
2

#

= argmin
✓

"
nX

i=1

(yi � ✓T xi )
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood
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