Lecture 7: 31 January, 2023

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2023

Predicting numerical values

- Data about housing prices
- Predict house price from living area

Living area $\left(\right.$ feet $\left.{ }^{2}\right)$	Price $(1000 \$$ s $)$
2104	400
1600	330
2400	369
1416	232
3000	540
\vdots	\vdots

Predicting numerical values

- Data about housing prices
- Predict house price from living area
- Scatterplot corresponding to the data
- Fit a function to the points

Linear predictors

- A richer set of input data

Living area $\left(\right.$ feet $\left.{ }^{2}\right)$	\#bedrooms	Price $(1000 \$$ s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
\vdots	\vdots	\vdots

Linear predictors

- A richer set of input data

■ Simplest case: fit a linear function with parameters
$\theta=\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$

$\mathbf{x}_{\mathbf{1}}$ Living area $\left(\right.$ feet $\left.^{2}\right)$	$\mathbf{X}_{\mathbf{2}}$ \#bedrooms	Price $(1000 \$$ s $)$
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
\vdots	\vdots	\vdots

Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters
$\theta=\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$
$h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}$
■ Input x may have k features

Living area $\left(\right.$ feet $\left.^{2}\right)$	\#bedrooms	Price $(1000 \$$ s $)$
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
\vdots	\vdots	\vdots

Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta=\left(\theta_{0}, \theta_{1} \theta_{2}\right)$
$h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}$
- Input x may have k features

Living area $\left(\right.$ feet $\left.{ }^{2}\right)$	\#bedrooms	Price $(1000 \$$ s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
\vdots	\vdots	\vdots

- By convention, add a dummy feature $x_{0}=1$

Linear predictors

- A richer set of input data

■ Simplest case: fit a linear function with parameters

Living area $\left(\right.$ feet $\left.{ }^{2}\right)$	\#bedrooms	Price $(1000 \$$ s $)$
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
\vdots	\vdots	\vdots

- Input x may have k features
$\boldsymbol{X}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
- By convention, add a dummy feature $x_{0}=1$
- For k input features
$h_{\theta}(x)=\sum_{i=0}^{k} \theta_{i} x_{i} \quad \boldsymbol{\theta}_{\mathbf{0}} \cdot \boldsymbol{x}_{0}=\boldsymbol{\theta}_{0} \cdot \mathbf{1}=\boldsymbol{\theta}_{0}$

Finding the best fit line

- Training input is
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
■ Each input x_{i} is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Add $x_{i}^{0}=1$ by convention

■ y_{i} is actual output

Finding the best fit line

- Training input is
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Each input x_{i} is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Add $x_{i}^{0}=1$ by convention
- y_{i} is actual output

■ How far away is our prediction $h_{\theta}\left(x_{i}\right)$ from the true answer y_{i} ?

Finding the best fit line

- Training input is

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

■ Each input x_{i} is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$

- Add $x_{i}^{0}=1$ by convention
- y_{i} is actual output
- How far away is our prediction $h_{\theta}\left(x_{i}\right)$ from the true answer y_{i} ?
- Define a cost (loss) function

$$
J(\theta)=\left(\frac{1}{2}\right)_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2} \text { predichor actual }^{\text {actur }}
$$

Finding the best fit line

- Training input is
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Each input x_{i} is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Add $x_{i}^{0}=1$ by convention
- y_{i} is actual output
- How far away is our prediction $h_{\theta}\left(x_{i}\right)$ from the true answer y_{i} ?
- Define a cost (loss) function
$J(\theta)=\boldsymbol{1} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$

- Essentially, the sum squared error (SSE)

Finding the best fit line

- Training input is
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Each input x_{i} is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Add $x_{i}^{0}=1$ by convention
- y_{i} is actual output
- How far away is our prediction $h_{\theta}\left(x_{i}\right)$ from the true answer y_{i} ?
- Define a cost (loss) function

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Essentially, the sum squared error (SSE)
- Divide by n, mean squared error (MSE)

Minimizing SSE

- Write x_{i} as row vector $\left[\begin{array}{llll}1 & x_{i}^{1} & \cdots & x_{i}^{k}\end{array}\right]$

Minimizing SSE

$■$ Write x_{i} as row vector $\left[\begin{array}{llll}1 & x_{i}^{1} & \cdots & x_{i}^{k}\end{array}\right]$
$\boldsymbol{\bullet} \boldsymbol{x}=\left[\begin{array}{cccc}\boldsymbol{x}_{\mathbf{n}}^{1} \\ 1 & x_{1}^{1} & \cdots & x_{1}^{k} \\ x_{2}^{1} & \cdots & x_{2}^{k} \\ 1 & \cdots & \\ x_{i}^{1} & \cdots & x_{i}^{k} \\ 1 & x_{n}^{1} & \cdots & x_{n}^{k}\end{array}\right], y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \cdots \\ y_{i} \\ \cdots \\ y_{n}\end{array}\right]\left[\begin{array}{llll}\mathbf{1} & \boldsymbol{x}_{\mathbf{l}}^{1} & \cdots & \boldsymbol{u}_{\mathbf{L}}^{\boldsymbol{k}}\end{array}\right]\left[\begin{array}{c}\boldsymbol{\theta}_{\boldsymbol{0}} \\ \boldsymbol{\theta}_{\mathbf{1}} \\ \vdots \\ \boldsymbol{\theta}_{\boldsymbol{k}}\end{array}\right]$

- Write θ as column vector, $\theta^{T}=$| $\left.\begin{array}{llll}\theta_{0} & \theta_{1} & \cdots & \theta_{k}\end{array}\right]$ |
| :--- | :--- | :--- | :--- |

$$
h\left(x_{i}\right)=\theta_{0} \cdot 1+\theta_{l} \cdot x_{l}^{1}-+\theta_{2} i_{l}^{k}
$$

Minimizing SSE

Minimizing SSE

- Write x_{i} as row vector $\left[\begin{array}{llll}1 & x_{i}^{1} & \cdots & x_{i}^{k}\end{array}\right]$
$\boldsymbol{\square} X=\left[\begin{array}{cccc}1 & x_{1}^{1} & \cdots & x_{1}^{k} \\ 1 & x_{2}^{1} & \cdots & x_{2}^{k} \\ & & \cdots & \\ 1 & x_{i}^{1} & \cdots & x_{i}^{k} \\ & & \cdots & \\ 1 & x_{n}^{1} & \cdots & x_{n}^{k}\end{array}\right], y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \cdots \\ y_{i} \\ \cdots \\ y_{n}\end{array}\right]$
- Write θ as column vector, $\theta^{\top}=\left[\begin{array}{llll}\theta_{0} & \theta_{1} & \cdots & \theta_{k}\end{array}\right]$
- $J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- Minimize $J(\theta)$ - set $\nabla_{\theta} J(\theta)=0$

Minimizing SSE

- $J(\theta)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- $\nabla_{\theta} J(\theta)=\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)=0$

Minimizing SSE

- $J(\theta)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- $\nabla_{\theta} J(\theta)=\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)$

$(x \theta)^{\top}=\theta^{\top} x^{\top}$

- To minimize, set $\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)=0$

■ Expand, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-y^{\top} X \theta-\theta^{\top} X^{\top} y+y^{\top} y\right)=0$

Minimizing SSE

- $J(\theta)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- $\nabla_{\theta} J(\theta)=\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)=0$

■ Expand, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-y^{\top} X \theta-\theta^{\top} X^{\top} y+y^{\top} y\right)=0$

- Check that $y^{\top} X \theta=\theta^{\top} X^{\top} y=\sum_{i=1}^{n} h_{\theta}\left(x_{i}\right) \cdot y_{i}$

Minimizing SSE

- $J(\theta)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- $\nabla_{\theta} J(\theta)=\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)$

> ᄃ

- To minimize, set $\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)=0$
- Expand, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-y^{\top} X \theta-\theta^{\top} X^{\top} y+y^{\top} y\right)=0$
- Check that $y^{\top} X \theta=\theta^{\top} X^{\top} y=\sum_{i=1}^{n} h_{\theta}\left(x_{i}\right) \cdot y_{i}$
- Combining terms, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-2 \theta^{\top} X^{\top} y+y^{\top} /<=0\right.$

$a z^{2}$
 $2 a z$

Minimizing SSE

- $J(\theta)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- $\nabla_{\theta} J(\theta)=\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)=0$

■ Expand, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-y^{\top} X \theta-\theta^{\top} X^{\top} y+y^{\top} y\right)=0$

- Check that $y^{\top} X \theta=\theta^{\top} X^{\top} y=\sum_{i=1}^{n} h_{\theta}\left(x_{i}\right) \cdot y_{i}$
- Combining terms, $\frac{1}{2} \nabla_{\theta}\left(\theta^{T} X^{T} X \theta-2 \theta^{T} X^{T} y+y^{T} y\right)=0$
- After differentiating, $X^{\top} X \theta-X^{\top} y=0$

Minimizing SSE

- $J(\theta)=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- $\nabla_{\theta} J(\theta)=\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X \theta-y)^{T}(X \theta-y)=0$

■ Expand, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-y^{\top} X \theta-\theta^{\top} X^{\top} y+y^{\top} y\right)=0$

- Check that $y^{\top} X \theta=\theta^{\top} X^{\top} y=\sum_{i=1}^{n} h_{\theta}\left(x_{i}\right) \cdot y_{i}$

■ Combining terms, $\frac{1}{2} \nabla_{\theta}\left(\theta^{\top} X^{\top} X \theta-2 \theta^{\top} X^{\top} y+y^{\top} y\right)=0$

- After differentiating, $X^{\top} X \theta-X^{\top} y=0$

■ Solve to get normal equation, $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution

■ Computational challenges

- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{T} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{T} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{T} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

■ Keep adjusting the line to reduce SSE

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line

■ How do we adjust the line?

Gradient descent

■ How does cost vary with parameters
$\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$?

- Gradients $\frac{\partial}{\partial \theta_{i}} J(\theta)$

Gradient descent

- How does cost vary with parameters

$$
\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) ?
$$

- Gradients $\frac{\partial}{\partial \theta_{i}} J(\theta)$
- Adjust each parameter against gradient

$$
\text { - } \theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)
$$

user defined paranctu

Gradient descent

- How does cost vary with parameters

$$
\begin{aligned}
\theta & =\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) ? \\
& \text { ■ Gradients } \frac{\partial}{\partial \theta_{i}} J(\theta)
\end{aligned}
$$

■ Adjust each parameter against gradient

- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$
- For a single training sample (x, y)

$$
\frac{\partial}{\partial \theta_{i}} J(\theta)=\frac{\partial}{\partial \theta_{i}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2}
$$

Gradient descent

- How does cost vary with parameters

$$
\begin{aligned}
\theta & =\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) ? \\
& \text { ■ Gradients } \frac{\partial}{\partial \theta_{i}} J(\theta)
\end{aligned}
$$

■ Adjust each parameter against gradient

- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$
- For a single training sample (x, y)

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} J(\theta) & \left.=\frac{\partial}{\partial \theta_{i}} \frac{1}{2} h_{\theta}(x)-y\right)^{2} \\
& =2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left(h_{\theta}(x)-y\right)
\end{aligned}
$$

Gradient descent

- How does cost vary with parameters

$$
\begin{aligned}
\theta & =\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) ? \\
& \text { ■ Gradients } \frac{\partial}{\partial \theta_{i}} J(\theta)
\end{aligned}
$$

- Adjust each parameter against gradient
- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$
- For a single training sample (x, y)

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} J(\theta) & =\frac{\partial}{\partial \theta_{i}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \\
& =2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left(h_{\theta}(x)-y\right) \quad \theta_{\bullet} \cdot \boldsymbol{x}_{\dot{i}} \\
& =\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left[\left(\sum_{j=0}^{k} \theta_{j} x_{j}\right)-y\right]
\end{aligned}
$$

Gradient descent

- How does cost vary with parameters

$$
\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) ?
$$

- Gradients $\frac{\partial}{\partial \theta_{i}} J(\theta)$

■ Adjust each parameter against gradient

- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$
- For a single training sample (x, y)

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} J(\theta) & =\frac{\partial}{\partial \theta_{i}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \\
& =2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left(h_{\theta}(x)-y\right) \\
& =\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left[\left(\sum_{j=0}^{k} \theta_{j} x_{j}\right)-y\right]=\left(h_{\theta}(x)-y\right) \cdot x_{i}
\end{aligned}
$$

Gradient descent

■ For a single training sample $(x, y), \frac{\partial}{\partial \theta_{i}} J(\theta)=\left(h_{\theta}(x)-y\right) \cdot x_{i}$

Gradient descent

- For a single training sample $(x, y), \frac{\partial}{\partial \theta_{i}} J(\theta)=\left(h_{\theta}(x)-y\right) \cdot x_{i}$
- Over the entire training set, $\frac{\partial}{\partial \theta_{i}} J(\theta)=\sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}$

Gradient descent

■ For a single training sample $(x, y), \frac{\partial}{\partial \theta_{i}} J(\theta)=\left(h_{\theta}(x)-y\right) \cdot x_{i}$

- Over the entire training set, $\frac{\partial}{\partial \theta_{i}} J(\theta)=\sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}$

Batch gradient descent
■ Compute $h_{\theta}\left(x_{j}\right)$ for entire training set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$

- Adjust each parameter

$$
\begin{aligned}
\theta_{i} & =\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta) \\
& =\theta_{i}-\alpha \cdot \sum_{j=1}^{m}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}
\end{aligned}
$$

- Repeat until convergence

Gradient descent

■ For a single training sample $(x, y), \frac{\partial}{\partial \theta_{i}} J(\theta)=\left(h_{\theta}(x)-y\right) \cdot x_{i}$

- Over the entire training set, $\frac{\partial}{\partial \theta_{i}} J(\theta)=\sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}$

Batch gradient descent
■ Compute $h_{\theta}\left(x_{j}\right)$ for entire training set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$

- Adjust each parameter

$$
\begin{aligned}
\theta_{i} & =\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta) \\
& =\theta_{i}-\alpha \cdot \sum_{j=1}^{n_{n}}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}
\end{aligned}
$$

- Repeat until convergence

Gradient descent

■ For a single training sample $(x, y), \frac{\partial}{\partial \theta_{i}} J(\theta)=\left(h_{\theta}(x)-y\right) \cdot x_{i}$

- Over the entire training set, $\frac{\partial}{\partial \theta_{i}} J(\theta)=\sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}$

Batch gradient descent

- Compute $h_{\theta}\left(x_{j}\right)$ for entire training set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Adjust each parameter

$$
\begin{aligned}
\theta_{i} & =\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta) \\
& =\theta_{i}-\alpha \cdot \sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}
\end{aligned}
$$

- Repeat until convergence

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Noisy outputs from a linear function
- $y_{i}=\theta^{\top} x_{i}+\epsilon$
- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{T} x_{i}$

$$
\begin{aligned}
& y_{l}=\theta^{\top} x_{i} \\
&+\varepsilon
\end{aligned}
$$

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Noisy outputs from a linear function

■ $y_{i}=\theta^{T} x_{i}+\epsilon$

- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{\top} x_{i}$
- Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Noisy outputs from a linear function
- $y_{i}=\theta^{T} x_{i}+\epsilon$
- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{\top} x_{i}$
- Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}

■ Want Maximum Likelihood Estimator (MLE) - maximize

$$
\mathcal{L}(\theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)
$$

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Noisy outputs from a linear function

■ $y_{i}=\theta^{T} x_{i}+\epsilon$

- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{\top} x_{i}$

■ Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}
■ Want Maximum Likelihood Estimator (MLE) - maximize

$$
\mathcal{L}(\theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)
$$

■ Instead, maximize log likelihood

$$
\ell(\theta)=\log \left(\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)\right)=\sum_{i=1}^{n} \log \left(P\left(y_{i} \mid x_{i} ; \theta\right)\right.
$$

Log likelihood and SSE loss

- $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{2}\right.}{2}}{ }^{2}$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $\left.P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\left.-\frac{\left(y-\boldsymbol{v}_{\theta} T\right.}{2} x_{i}\right)^{2}} 2 \sigma^{2}\right)$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$

- Log likelihood
$\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)$

Log likelihood and SSE loss
■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}$

- Log likelihood (assuming natural logarithm)

$$
\begin{array}{r}
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}} \\
\quad \text { f.g } \\
\operatorname{lnf}+\operatorname{lng}
\end{array}
$$

Log likelihood and SSE loss

- $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$
- Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}$
■ Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\mathrm{MSE}}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}$
■ Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\text {MSE }}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]=\underset{\theta}{\arg \min }\left[\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$
■ Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\mathrm{MSE}}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]=\underset{\theta}{\arg \min }\left[\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

- Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood

