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Predicting numerical values

m Data about housing prices

m Predict house price from living area

Living area (feet?)

Price (1000$s)

2104
1600
2400
1416
3000

400
330
369
232
540
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Predicting numerical values

Living area (feet?) | Price (10008s)
- : 2104 400
m D housing pri
ata about housing prices 4660 e
. . . 2400 369
m Predict house price from living area 1416 939
3000 540

housing prices

m Scatterplot corresponding to the data

m Fit a function to the points ol

500

price (in $1000)

4001

300

2001

100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet
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Linear predictors

m A richer set of input data

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
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Linear predictors

m A richer set of input data X, Xa
_ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 200
function with parameters 1600 3 330
0 = (6, 01.6>) 2400 3 369
1416 2 232
hg(x) = 0o + O1x1 + axa 3000 4 540
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Linear predictors

m A richer set of input data

_ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 400
function with parameters 1600 3 330
6 = (6o, 01,65) 2400 3 369
1416 2 232
ho(x) = 6o + O1x1 + boxo 3000 4 540
m Input x may have k features : E : 4
(X1, X2y« -+, Xk)
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Linear predictors

m A richer set of input data

_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 200
function with parameters 1600 3 330
0 = (6o, 01.0>) 2400 3 369
1416 2 232
hg(x) {00 H01x1 + O2x2 3000 4 540
m Input x may have k features : 5 5 .
(X1, X2y« -+, Xk)

m By convention, add a dummy
feature xp = 1
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Linear predictors

m A richer set of input data

_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)

m Simplest case: fit a linear 2104 3 400
function with parameters 1600 3 330
0 = (0o, 01, 02) 2400 3 369
1416 2 232
ho(x) = 6o + O1x1 + boxo 3000 4 540

m Input x may have k features : E : 4

x ..(X17X27 s an)

m By convention, add a dummy
feature xp = 1

m For k input features

k
hg(X) = ZQ/X,' 90 K(J = go" = ao
i=0
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+ (Xn, yn)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+, (Xn, yn) }
m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?
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Finding the best fit line

m Training input is
{(Xl7y1)7 (X27Y2)7 M (thyn)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output O
m How far away is our prediction hy(x;) from O

the true answer y;?

m Define a cost (loss) function
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+, (Xn, yn) }
m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function

50 = § 3 ato) 7

i=1

m Essentially, the sum squared error (SSE)
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Finding the best fit line

m Training input is
{(Xl-/yl)v (X27y2)7 ) (men)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
1< 2
J(0) = 5 > (ho(xi) = vi)

i=1

m Essentially, the sum squared error (SSE)

m Divide by n, mean squared error (MSE)
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 oo xk ]
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]
X
T R B [ 1 l
| X -- v)
thd v Lol %
X \
m X = Ly = .
1 Xil xik y Vi .
A Lo,
m Write 6 as column vector, 7 = [ Og 01 --- 0O

Ni-Bert +O, .~ 0
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k]
L] [
1 d y

m X = 1 Xil.""' Xik Y = yi
U IR B I

m Write # as column vector, 07 = [ 0y 01

w J0) = 1S (ho(x) — i) = S(X6 - )T (X6 - y)

2 & 2
——
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]
(1 xt o X ] [ v ]
1 x3 - xXF y2
L .
1 Xil Xik y yi
L1 Xy o xp L o
m Write 0 as column vector, GT:[HO 01 --- Hk}
1< 2 1 T
n J(0) = 5 > (ho(x) 1) = H(X0— ) T(X0~ y)
i=1

m Minimize J(6) — set Vy J(0) =0
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0
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Minimizing SSE

1
" J(6) = (X0 =) (X0 ) o7
(k)" =

m Vo J(0) = Vg 3(X0— y)T (X0 —y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0
m Expand, 1V, (7TXTX0 —y"™X0 —0TXTy+yTy)=0
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Minimizing SSE

1

m J(0) = 5(X0— y)T(X0—y)

m Vo J(0) = Vo 2(X0—y)T(X0 - y)

= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

m Expand, 1V, (7TXTX0 —y"™X0 —0TXTy+yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) =Vy 5(X0—y)T (X0 —y) L ] F
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 3V, (07XTX0 — yTX0 - 0"XTy +yTy) =0

m Check that y " X0 =07 X7y =" he(x/)b

i=1

Combining terms, %Vg (HTXTXH—QHTXTy—q—)?}Q:O Z-

Madhavan Mukund Lecture 7: 31 January, 2023



Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 1V, (0TXTX0—yTX0—0TXTy +yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1

Combining terms,@V(g (OTXTX0-20"XTy +yTy)=0
. . . /
m After differentiating, X' X6 — X7y =0
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 1V, (0TXTX0—yTX0—0TXTy +yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1

m Combining terms, %Vg (OTXTXO—20"XTy +yTy)=0
m After differentiating, X" X0 — X7y =0 XTNQ - X—S
m Solve to get normal equation, § = (X" X)X Ty
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE

m Stop when we find the best fit line
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE
m Stop when we find the best fit line

m How do we adjust the line?
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Gradient desce

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(6
m Gradients 80,-'/( )

20,6,)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

0 01
5500 = 55 () = y)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

20 = 2200 -2

= 2. %(hg(X) —)/)aaei(he(x) _)/)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

0 01

570 = 255 (h(x) — y)?
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

w0, =0 — aa%J(f))

20,6,)

m For a single training sample (x, y)

0 01
26,70 = 3¢ 2(ha( x) = y)?
. 1 2
a 879,
= (ho(x ZQXJ —y| = (hb(x)—y)-x
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

: . 0 . .
m Over the entire training set, a—gij(e) = Z}(hg(xj-) = Yj) X
J:
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

. - 0 . ,
m Over the entire training set, a—gij(e) = Z}(hg(xj-) —Yj) X
J:
Batch gradient descent
m Compute hy(x;) for entire training set
{(Xl‘/ yl)v ) (X,,./ Yn)}
m Adjust each parameter

0; = 6; —

m Repeat until convergence
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, a—gij(e) = Z(hg()(j) = Yj) X

j=1
Batch gradient descent Stochastic gradient descent
m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)
{Gas), - Gcn, )} m Adjust each parameter —
m Adjust each parameter 0i =0;i —a-(ho(x5) — y) - X
0
n
=0i—a-Y (ho(x) —yj) -
j=1

m Repeat until convergence
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, a—gij(e) = Z(hg()(j) = Yj) X

j=1
Batch gradient descent Stochastic gradient descent

m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)

{Gas), - Gcn, )} m Adjust each parameter —

m Adjust each paarameter 0i =0;i —a-(ho(x5) — y) - X

=0 aa—einJ(é’) Pros and cons
=0, —a- Z(hﬁ(xf) —y)- XJ' m Faster progress for large batch size
j=1

m May oscillate indefinitely
m Repeat until convergence
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Regression and SSE loss

m Training input is {(x1,y1), (x2,52), ..., (Xn. ¥n) } O .-
Noisy outputs from a linear function j L - v

yi=0Tx +¢€ +£

e ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o2

Vi~ N(piyo?), pi=0"x
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Regression and SSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

Noisy outputs from a linear function

yi=0Tx +¢€

e ~ N(0,0?) : Gaussian_noise, mean 0, fixed variance o2

Vi~ N(piy02), pi {07 x;

m Model gives us an estimate for ¢, so regression learns 1i; for each x;
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Regression and SSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

Noisy outputs from a linear function

my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

m oy~ N(pi,0?), pi =07
m Model gives us an estimate for ¢, so regression learns 1i; for each x;

m Want Maximum Likelihood Estimator (MLE) — maximize

£@) = 1] Puilx:6)
i=1
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Regression and SSE loss

m Training input is {(x1, 1), (x2,¥2), .-, (X0, ¥n)}
m Noisy outputs from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o \

m oy~ N(ui,0?), pi=0"x

m Model gives us an estimate for ¢, so regression learns 1i; for each x;

m Want Maximum Likelihood Estimator (MLE) — maximize

£@) = 1] Puilx:6)
i=1

m Instead, maximize log likelihood

£(6) = log (H PO | 5 e)) - 1
i=1 i=1

DMML Jan—-Apr 2023
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Log likelihood and SSE loss

1 W 2
] ;:N L,‘./U2 ,SOP fi X,';H = e 20%
yi = N(pi,o%) (i | xi: 0) 207
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Log likelihood and SSE loss

1 y—nj)? 1 (y=6 7 x)?

m oy = N(ui,0?), so P(y; | xi;0) = e 22 = e 202
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Log likelihood and SSE loss

1 r—nj)? 1 (y—67x)?

m oy = N(ui,0?), so P(y; | xi;0) = e 202 = e 202

m Log likelihood

o S )
— (6] e 20
P .\ Varo?

Madhavan Mukund Lecture 7: 31 January, 2023 DMML Jan—Apr 2023



Log likelihood and SSE loss

N(pin0?), 50 Plyi | xi) = e a8 = L~
my = i, 0~ ), SO Yi | Xiy = e 20 = e 20
V2mo? V2mo?

m Log likelihood (assuming natural logarithm) %

n 1 o-0Tx)? 1 " (y — 07 x)?

10) =3 1o (e ) (T () -2
P 1 2702 2702 — 20
= w ﬁ 1= _ P
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Log likelihood and SSE loss

1 =np? 1 _r=0Tx)?
m oy = N(ui,0%),50 Py | xi;;0) = ——=e 22 =-——e 27
P 27102

m Log likelihood (assuming natural logarithm)

Z og < (yff;")2> — nlog < ! ) N Z (y=0"x)?
V2mo? V2ro? pt 202

m To maximize /(0) with respect to 0, ignore all terms that do not depend on 0
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Log likelihood and SSE loss

1 =np? 1 _r=0Tx)?
m oy = N(ui,0%),50 Py | xi;;0) = ——=e 22 =-——e 27
P 27102

m Log likelihood (assuming natural logarithm)

Z og < (yff;")2> — nlog < ! ) N Z (y=0"x)?
V2mo? V2ro? pt 202

m To maximize /(0) with respect to 0, ignore all terms that do not depend on 0

m Optimum value of ¢ is given by

@5 = argmax | — ,-—HTX,-2
MSE ge [ Z(y )]

i=1
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Log likelihood and SSE loss

1 =np? 1 _r=0Tx)?
m oy = N(ui,0%),50 Py | xi;;0) = ——=e 22 =-——e 27
P 27102

m Log likelihood (assuming natural logarithm)

_( —07x)? 1 & - QT i 2
Z Iog < y7252 > =n |og < ) _ Z w
vV 27TO' V2mo? 20

i=1

m To maximize /(0) with respect to 0, ignore all terms that do not depend on 0
m Optimum value of ¢ is given by

0 = argmax | — ,-—HTX,-2 = argmin ,-—QTX,-z
sE = arg! [ > )] g [Z(y )

i—1 0 i—1
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Log likelihood and SSE loss

1 =np? 1 _r=0Tx)?
m oy = N(ui,0%),50 Py | xi;;0) = ——=e 22 =-——e 27
P 27102

m Log likelihood (assuming natural logarithm)

Z og < (yffﬁ"F) — nlog < ! ) N Z (y=0"x)?
V2mo? V2ro? pt 202

m To maximize /(0) with respect to 0, ignore all terms that do not depend on 0

m Optimum value of ¢ is given by
n n
Omse = arg max [— Z(y,- — HTX,-)2] = arg min [Z(y,- — 0Tx,-)2]
0 i=1 0 i=1
m Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood
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