Lecture 19: 23 March, 2023

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2023

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?
inputs

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

- $f_{3}=w_{3} \cdot\left\langle f_{1}, f_{2}\right\rangle+b_{3}$

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

- $f_{3}=w_{3} \cdot\left\langle f_{1}, f_{2}\right\rangle+b_{3}$
- $f_{3}=w_{3} \cdot\left\langle w_{1} \cdot x+b_{1}, w_{2} \cdot x+b_{2}\right\rangle+b_{3}$

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

- $f_{3}=w_{3} \cdot\left\langle f_{1}, f_{2}\right\rangle+b_{3}$

■ $f_{3}=w_{3} \cdot\left\langle w_{1} \cdot x+b_{1}, w_{2} \cdot x+b_{2}\right\rangle+b_{3}$
■ $f_{3}=\sum_{i=1}^{4}\left(w_{3_{1}} w_{1_{i}}+w_{3_{2}} w_{2_{i}}\right) \cdot x_{i}$ $+\left(w_{3_{1}} b_{1}+w_{3_{2}} b_{2}+b_{3}\right)$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$
- $x_{2}=0$: As x_{1} goes from 0 to 1 , output goes from 0 to 1 , so $u>0$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$
- $x_{2}=0$: As x_{1} goes from 0 to 1 , output goes from 0 to 1 , so $u>0$
- $x_{2}=1$: As x_{1} goes from 0 to 1 , output goes from 1 to 0 , so $u<0$

x_{1}

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$
- $x_{2}=0$: As x_{1} goes from 0 to 1 , output goes from 0 to 1 , so $u>0$
- $x_{2}=1$: As x_{1} goes from 0 to 1 , output goes from 1 to 0 , so $u<0$
■ Observed by Minsky and Papert, 1969, first "AI Winter"

x_{1}

Non-linear activation

- Transform linear output z through a non-linear activation function
- Sigmoid function $\frac{1}{1+e^{-z}}$

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions
- Hidden neurons are arranged in layers

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions
- Hidden neurons are arranged in layers
- Each layer is fully connected to the next

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions
- Hidden neurons are arranged in layers
- Each layer is fully connected to the next
- Set weight to zero to remove an edge

Non-linear activation

- Transform linear output z through a non-linear activation function
- Sigmoid function $\frac{1}{1+e^{-z}}$
- Step is at $z=0$
- $z=w x+b$, so step is at $x=-b / w$

Universality

■ Create a step at $x=-b / w$

Universality

■ Create a step at $x=-b / w$

- Cascade steps

Universality

■ Create a step at $x=-b / w$

- Cascade steps

■ Subtract steps to create a box

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box
- Create many boxes

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function
- Need only one hidden layer!

Non-linear activation

- With non-linear activation, network of neurons can approximate any function

Non-linear activation

- With non-linear activation, network of neurons can approximate any function
- Can build "rectangular" blocks

Non-linear activation

- With non-linear activation, network of neurons can approximate any function
- Can build "rectangular" blocks
- Combine blocks to capture any classification boundary

Example: Recognizing handwritten digits

- MNIST data set

		6	1							
O	9		1	2						
8	6	9	0	5	6					
8	7	9	3	9	8	5				
0			9	8						4
4	6		4		6					
7										
0	2		7							
			8	0	7					

Example: Recognizing handwritten digits

- MNIST data set
- 1000 samples of 10 handwritten digits
- Assume input has been segmented

0	-1	1	9	2	1	3	1	4	3
5	3	6	1	7	2	8	6	9	4
0	9	1	1	2	4	3	2	7	3
8	6	9	0	5	6	0	7	6	1
8	7	9	3	9	8	5	9	3	3
0	7	4	9	8	0	9	4	7	4
4	6	0	4	5	6	1	0	0	1
7	1	6	3	0	2	7	0	7	9
0	2	6	7	8	3	9	0	4	6
	4	6	8	0	7	8	3	1	1

Example: Recognizing handwritten digits

- MNIST data set
- 1000 samples of 10 handwritten digits
- Assume input has been segmented
- Each digit is 28×28 pixels
- Grayscale value, 0 to 1
- 784 pixels

Example: Recognizing handwritten digits

- MNIST data set
- 1000 samples of 10 handwritten digits

■ Assume input has been segmented

- Each digit is 28×28 pixels
- Grayscale value, 0 to 1
- 784 pixels

■ Input $x=\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

0	-1	1	9	2	1	3	1	4	3
5	3	6	1	7	2	8	6	9	4
0	9	1	1	2	4	3	2	7	3
8	6	9	0	5	6	0	7	6	1
8	7	9	3	9	8	5	9	3	3
0	7	4	9	8	0	9	4	7	4
4	6	0	4	5	6	1	0	0	1
	1	6	3	0	2	7	0	7	9
0	2	6	7	8	3	9	0	4	6
	4	6	8	0	7	8	3	1	1

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$
input layer (784 neurons)

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes
- Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes

■ Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$

- Final output is best a_{j}
input layer (784 neurons)
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes

■ Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$

- Final output is best a_{j}
- Naïvely, arg max a_{j}
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes
- Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$
- Final output is best a_{j}
- Naïvely, arg max a_{j}
- Softmax, arg $\max _{j} \frac{e^{a_{j}}}{\sum_{j} e^{a_{j}}}$
- "Smooth" version of arg max

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

■ Combination of features determines output

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

■ Combination of features determines output
■ Claim: Automatic identification of features is strength of the model

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

■ Combination of features determines output
■ Claim: Automatic identification of features is strength of the model

- Counter argument: implicitly extracted features are impossible to interpret
- Explainability

Neural networks

■ Without loss of generality,

- Assume the network is layered

■ All paths from input to output have the same length

- Each layer is fully connected to the previous one

■ Set weight to 0 if connection is not needed

Neural networks

- Without loss of generality,
- Assume the network is layered
- All paths from input to output have the same length
- Each layer is fully connected to the previous one
- Set weight to 0 if connection is not needed

■ Structure of an individual neuron

- Input weights w_{1}, \ldots, w_{m}, bias b, output z, activation value a

Notation

- Layers $\ell \in\{1,2, \ldots, L\}$
- Inputs are connected first hidden layer, layer 1
- Layer L is the output layer

■ Layer ℓ has m_{ℓ} nodes $1,2, \ldots, m_{\ell}$

Notation

■ Layers $\ell \in\{1,2, \ldots, L\}$

- Inputs are connected first hidden layer, layer 1
- Layer L is the output layer
- Layer ℓ has m_{ℓ} nodes $1,2, \ldots, m_{\ell}$
- Node k in layer ℓ has bias b_{k}^{ℓ}, output z_{k}^{ℓ} and activation value a_{k}^{ℓ}
- Weight on edge from node j in level $\ell-1$ to node k in level ℓ is $w_{k j}^{\ell}$

Notation

- Why the inversion of indices in the subscript $w_{k j}^{\ell}$?
- $z_{k}^{\ell}=w_{k 1}^{\ell} a_{1}^{\ell-1}+w_{k 2}^{\ell} a_{2}^{\ell-1}+\cdots+w_{k m_{\ell-1}}^{\ell} a_{m_{\ell-1}}^{\ell-1}$
- Let $\bar{w}_{k}^{\ell}=\left(w_{k 1}^{\ell}, w_{k 2}^{\ell}, \ldots, w_{k m_{\ell-1}}^{\ell}\right)$ and $\bar{a}^{\ell-1}=\left(a_{1}^{\ell-1}, a_{2}^{\ell-1}, \ldots, a_{m_{\ell-1}}^{\ell-1}\right)$
- Then $z_{k}^{\ell}=\bar{w}_{k}^{\ell} \cdot \bar{a}^{l-1}$

Notation

- Why the inversion of indices in the subscript $w_{k j}^{\ell}$?
- $z_{k}^{\ell}=w_{k 1}^{\ell} a_{1}^{\ell-1}+w_{k 2}^{\ell} a_{2}^{\ell-1}+\cdots+w_{k m_{\ell-1}}^{\ell} a_{m_{\ell-1}}^{\ell-1}$
- Let $\bar{w}_{k}^{\ell}=\left(w_{k 1}^{\ell}, w_{k 2}^{\ell}, \ldots, w_{k m_{\ell-1}}^{\ell}\right)$ and $\bar{a}^{\ell-1}=\left(a_{1}^{\ell-1}, a_{2}^{\ell-1}, \ldots, a_{m_{\ell-1}}^{\ell-1}\right)$
- Then $z_{k}^{\ell}=\bar{w}_{k}^{\ell} \cdot \bar{a}^{\ell-1}$
- Assume all layers have same number of nodes
- Let $m=\max _{\ell \in\{1.2, \ldots, L\}} m_{\ell}$
- For any layer i, for $k>m_{i}$, we set all of $w_{k j}^{\ell}, b_{k}^{\ell}, z_{k}^{\ell}, a_{k}^{\ell}$ to 0
- Matrix formulation

$$
\left[\begin{array}{c}
\bar{z}_{1}^{\ell} \\
\bar{z}_{2}^{\ell} \\
\cdots \\
\bar{z}_{m}^{\ell}
\end{array}\right]=\left[\begin{array}{c}
\bar{w}_{1}^{\ell} \\
\bar{w}_{2}^{\ell} \\
\cdots \\
\bar{w}_{m}^{\ell}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\ell-1} \\
a_{2}^{\ell-1} \\
\cdots \\
a_{m}^{\ell-1}
\end{array}\right]
$$

Learning the parameters

■ Need to find optimum values for all weights $w_{k j}^{\ell}$

- Use gradient descent
- Cost function C, partial derivatives $\frac{\partial C}{\partial w_{k j}^{l}}, \frac{\partial C}{\partial b_{k}^{\ell}}$

Learning the parameters

- Need to find optimum values for all weights $w_{k j}^{\ell}$
- Use gradient descent
- Cost function C, partial derivatives $\frac{\partial C}{\partial w_{k j}^{l}}, \frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function

Learning the parameters

- Need to find optimum values for all weights $w_{k j}^{\ell}$
- Use gradient descent
- Cost function C, partial derivatives $\frac{\partial C}{\partial w_{k j}^{\ell}}, \frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function

1 For input $x, C(x)$ is a function of only the output layer activation, a^{L}

- For instance, for training input $\left(x_{i}, y_{i}\right)$, sum-squared error is $\left(y_{i}-a_{i}^{L}\right)^{2}$
- Note that x_{i}, y_{i} are fixed values, only a_{i}^{L} is a variable

Learning the parameters

- Need to find optimum values for all weights $w_{k j}^{\ell}$
- Use gradient descent
- Cost function C, partial derivatives $\frac{\partial C}{\partial w_{k j}^{l}}, \frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function

1 For input $x, C(x)$ is a function of only the output layer activation, a^{L}

- For instance, for training input $\left(x_{i}, y_{i}\right)$, sum-squared error is $\left(y_{i}-a_{i}^{L}\right)^{2}$
- Note that x_{i}, y_{i} are fixed values, only a_{i}^{L} is a variable

2 Total cost is average of individual input costs

- Each input x_{i} incurs cost $C\left(x_{i}\right)$, total cost is $\frac{1}{n} \sum_{i=1}^{n} C\left(x_{i}\right)$
- For instance, mean sum-squared error $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a_{i}^{L}\right)^{2}$

Learning the parameters

- Assumptions about the cost function

1 For input $x, C(x)$ is a function of only the output layer activation, a^{L}
2 Total cost is average of individual input costs

- With these assumptions:
- We can write $\frac{\partial C}{\partial w_{k j}^{\ell}}, \frac{\partial C}{\partial b_{k}^{\ell}}$ in terms of individual $\frac{\partial a_{i}^{L}}{\partial w_{k j}^{\ell}}, \frac{\partial a_{i}^{L}}{\partial b_{k}^{\ell}}$
- Can extrapolate change in individual cost $C(x)$ to change in overall $\operatorname{cost} C$ - stochastic gradient descent

Learning the parameters

- Assumptions about the cost function

1 For input $x, C(x)$ is a function of only the output layer activation, a^{L}
2 Total cost is average of individual input costs

- With these assumptions:
- We can write $\frac{\partial C}{\partial w_{k j}^{\ell}}, \frac{\partial C}{\partial b_{k}^{\ell}}$ in terms of individual $\frac{\partial a_{i}^{L}}{\partial w_{k j}^{\ell}}, \frac{\partial a_{i}^{L}}{\partial b_{k}^{\ell}}$
- Can extrapolate change in individual cost $C(x)$ to change in overall $\operatorname{cost} C$ stochastic gradient descent
- Complex dependency of C on $w_{k j}^{\ell}, b_{k}^{\ell}$
- Many intermediate layers
- Many paths through these layers
- Use chain rule to decompose into local dependencies

■ $y=g(f(x)) \Rightarrow \frac{\partial g}{\partial x}=\frac{\partial g}{\partial f} \frac{\partial f}{\partial x}$

