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Soft margin optimization

Minimize
|w |
2

+
NX

i=1

⇠2i

Subject to

⇠i � 0

w · xi + b > 1� ⇠i , if yi = 1

w · xi + b < �1 + ⇠i , if yi = 1

Constraints include requirement that error
terms are non-negative

Again the objective function is quadratic
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Dualization

Wolfe dual

Maximize
X

i

↵i �
1

2

X

i ,j

↵i↵jyiyj(xi · xj)

Subject to

0  ↵i � 1
P

i ↵iyi = 0
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Soft margin optimization

Can again be solved using convex
optimization theory

Form of the solution turns out to be the
same as the hard margin case

Expression in terms of Lagrange
multipliers ↵i

Only terms corresponding to support
vectors are actively used

sign

"
X

i2sv
yi↵i (xi · z) + b

#
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The non-linear case

How do we deal with datasets where
the separator is a complex shape?

Geometrically transform the data

Typically, add dimensions

For instance, if we can “lift” one class,
we can find a planar separator between
levels
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Geometric tranformation

Consider two sets of points separated by
a circle of radius 1

Equation of circle is x2 + y2 = 1

Points inside the circle, x2 + y2 < 1

Points outside circle, x2 + y2 > 1

Transformation
' : (x , y) 7! (x , y , x2 + y2)

Points inside circle lie below z = 1

Point outside circle lifted above z = 1
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SVM after transformation

SVM in original space

sign

"
X

i2sv
yi↵i (xi · z) + b

#

After transformation

sign

"
X

i2sv
yi↵i ('(xi ) · '(z)) + b

#

All we need to know is how to compute
dot products in transformed space
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Dot products

Consider the transformation

' : (x1, x2) 7! (1,
p
2x1,

p
2x2, x21 ,

p
2x1x2, x22 )

Dot product in transformed space

'(x) · '(z) = 1 + 2x1z1 + 2x2z2 + x21 z
2
1

+2x1x2z1z2 + x22 z
2
2

= (1 + x1z1 + x2z2)2

Transformed dot product can be
expressed in terms of original inputs

'(x) · '(z) = K (x , z) = (1 + x1z1 + x2z2)2
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Kernels

K is a kernel for transformation ' if
K (x , z) = '(x) · '(z)

If we have a kernel, we don’t need to
explicitly compute transformed points

All dot products can be computed
implicitly using the kernel on original
data points
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Kernels

If we know K is a kernel for some
transformation ', we can blindly use K
without even knowing what ' looks like!

When is a function a valid kernel?

Has been studied in mathematics —
Mercer’s Theorem

Criteria are non-constructive

Can define su�cient conditions from
linear algebra
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Kernels

Kernel over training data x1, x2, . . . , xN
can be represented as a gram matrix

K =

x1 x2 · · · xn
x1
x2
...
xn

2

664

3

775

Entries are values K (xi , xj)

Gram matrix should be positive
semi-definite for all x1, x2, . . . , xN
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Known kernels

Fortunately, there are many known
kernels

Polynomial kernels

K (x , z) = (1 + x · z)k

Any K (x , z) representing a similarity
measure

Gaussian radial basis function —
similarity based on inverse exponential
distance

K (x , z) = e�c|x�z|2
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Till about2010

SVM +manually constructed bench

were "best" classifiers
then came neural networks

Thishappens "automadall"


