Lecture 24: 18 April, 2023

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2023

Approximate inference

- Exact inference is NP-complete

■ Generate random samples, count to estimate probabilities

■ Respect conditional probabilities generate in topological order

- Suppose we are interested in $P(b \mid j, m)$
- Samples with $\neg j$ or $\neg m$ are useless
- Can we sample more efficiently?

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$
- If we start with \neg Cloudy, sample is useless
- Immediately stop and reject this sample - rejection sampling
- General problem with low probability situation - many samples are rejected

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Compute likelihood of evidence
- Samples $s_{1}, s_{2}, \ldots, s_{N}$ with weights $W_{1}, W_{2}, \ldots W_{N}$

■ $P(r \mid c, w)=\frac{\sum_{s_{i} \text { has rain }} W_{i}}{\sum_{1 \leq j \leq N} W_{j}}$

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states
- For us, a state will be an assignment of values to variables
- A three state Markov Chain

- Represent using a transition matrix - stochastic

$$
A=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

- $P[j]$ is probability of being in state j

Ergodicity

- Markov chain A is ergodic if there is some t_{0} such that for every P, for all $t>t_{0}$, for every j, $\left(P^{\top} A^{t}\right)[j]>0$.

■ Ergodic Markov chain has a stationary distribution $\pi^{*},\left(\pi^{*}\right)^{\top} A=\pi^{*}$

- For any starting distribution $P, \lim _{t \rightarrow \infty} P^{\top} A^{t}=\pi^{*}$
- Stationary distribution represents fraction of visits to each state in a long enough execution

■ Sufficient conditions for ergodicity

- Irreducible (strong connected)
- Aperiodic (paths of all lengths between states)

Approximate inference using Markov chains

■ Bayesian network has variables $V_{1}, V_{2}, \ldots, V_{n}$

■ Each assignment of values to the variables is a state

- Set up a Markov chain based on these states
- Stationary distribution should assign to state s the probability $P(s)$ in the
 Bayesian network

■ How to reverse engineer the transition probabilities to achieve this?

Reversible Markov chains

■ Ergodic Markov chain with stationary distribution $\pi *$

Reversible Markov chains

■ Ergodic Markov chain with stationary distribution $\pi *$

- Transition matrix A, write $p_{j k}$ for $A[j][k]$

■ Probability of transition from state j to state k

Reversible Markov chains

■ Ergodic Markov chain with stationary distribution $\pi *$

- Transition matrix A, write $p_{j k}$ for $A[j][k]$
- Probability of transition from state j to state k

■ Reversibility — in steady state, probability of going from j to k should equal probability of going from k to j

Reversible Markov chains

- Ergodic Markov chain with stationary distribution $\pi *$
- Transition matrix A, write $p_{j k}$ for $A[j][k]$

■ Probability of transition from state j to state k

- Reversibility — in steady state, probability of going from j to k should equal probability of going from k to j

$\Perp A[j)(k)=P_{j k}$

■ Given an evolution $x_{1} x_{2} \ldots$, for large $n, P\left[x_{n}=k \mid x_{n-1}=j\right]=P\left[x_{n-1}=j \mid x_{n}=k\right]$

Reversible Markov chains

■ Ergodic Markov chain with stationary distribution $\pi *$

- Transition matrix A, write $p_{j k}$ for $A[j][k]$

■ Probability of transition from state j to state k
■ Reversibility —in steady state, probability of going from j to k should equal probability of going from k to j

■ Given an evolution $x_{1} x_{2} \ldots$, for large $n, P\left[x_{n}=k \mid x_{n-1}=j\right]=P\left[x_{n-1}=j \mid x_{n}=k\right]$
■ $P\left[x_{n-1}=j \mid x_{n}=k\right]=P\left[x_{n}=k \mid x_{n-1}=j\right] . \stackrel{P\left[x_{n-1}=j\right]}{P\left[x_{n}=k\right]} \pi_{j}^{*}=\pi_{j}$

Reversible Markov chains

■ Ergodic Markov chain with stationary distribution $\pi *$

- Transition matrix A, write $p_{j k}$ for $A[j][k]$

■ Probability of transition from state j to state k
■ Reversibility — in steady state, probability of going from j to k should equal probability of going from k to j

- Given an evolution $x_{1} x_{2} \ldots$, for large $n, P\left[x_{n}=k \mid x_{n-1}=j\right]=P\left[x_{n-1}=j \mid x_{n}=k\right]$
- $P\left[x_{n-1}=j \mid x_{n}=k\right]=P\left[x_{n}=k \mid x_{n-1}=j\right] . \quad \frac{\pi_{j}}{\pi_{k}}$, in steady state $\pi^{k} \omega \pi$

Reversible Markov chains

■ Ergodic Markov chain with stationary distribution $\pi *$

- Transition matrix A, write $p_{j k}$ for $A[j][k]$

■ Probability of transition from state j to state k
■ Reversibility —in steady state, probability of going from j to k should equal probability of going from k to j

- Given an evolution $x_{1} x_{2} \ldots$, for large $n, P\left[x_{n}=k \mid x_{n-1}=j\right]=P\left[x_{n-1}=j \mid x_{n}=k\right]$

■ $P\left[x_{n-1}=j \mid x_{n}=k\right]=P\left[x_{n}=k \mid x_{n-1}=j\right] \cdot\left(\frac{\pi_{j}}{\pi_{k}}\right.$, in steady state

- $p_{k j}=p_{j k} \frac{\pi_{k}}{\pi_{k}}$

Reversible Markov chains

- Ergodic Markov chain with stationary distribution $\pi *$

■ Transition matrix A, write $p_{j k}$ for $A[j][k]$

- Probability of transition from state j to state k

■ Reversibility — in steady state, probability of going from j to k should equal probability of going from k to j

■ Given an evolution $x_{1} x_{2} \ldots$, for large $n, P\left[x_{n}=k \mid x_{n-1}=j\right]=P\left[x_{n-1}=j \mid x_{n}=k\right]$
■ $P\left[x_{n-1}=j \mid x_{n}=k\right]=P\left[x_{n}=k \mid x_{n-1}=j\right] \cdot \frac{\pi_{j}}{\pi_{k}}$, in steady state

- $p_{k j}=p_{j k} \frac{\pi_{j}}{\pi_{k}}$
- $\pi_{j} \cdot p_{j k}=\pi_{k} \cdot p_{k j}$ - Treat this as the defy we walt to use

Reversible Markov chains

- Ergodic Markov chain

Reversible Markov chains

- Ergodic Markov chain
- Suppose $a^{T}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satifies reversibility condition for all j, k
- $a_{j} \cdot p_{j k}=a_{k} \cdot p_{k j}$

$$
\pi_{j} p_{j k}=\pi_{k} p_{k j}
$$

Reversible Markov chains

- Ergodic Markov chain

■ Suppose $a^{T}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satifies reversibility condition for all j, k - $a_{j} \cdot p_{j k}=a_{k} \cdot p_{k j}$

- $\sum_{k} a_{j} \cdot p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$

Reversible Markov chains

- Ergodic Markov chain

■ Suppose $a^{T}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satifies reversibility condition for all j, k

- $a_{j} \cdot p_{j k}=a_{k} \cdot p_{k j}$ - for every $J \& k$
- $\sum_{k} a_{j} \cdot p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$
$-a_{j} \sum_{k} p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$
row J in A

$$
\underbrace{a_{1}}_{j_{1}} \cdot P_{J 1}=a_{1} P_{1} f_{j}
$$

Reversible Markov chains

- Ergodic Markov chain

■ Suppose $a^{T}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satifies reversibility condition for all j, k - $a_{j} \cdot p_{j k}=a_{k} \cdot p_{k j}$

■ $\sum_{k} a_{j} \cdot p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$

- $a_{j} \sum_{k} p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$

■ $a_{j} \cdot 1=\sum_{k} a_{k} \cdot p_{k j}$

Reversible Markov chains

- Ergodic Markov chain

$$
a_{j}=a_{i} p_{1 j}+a_{2} p_{2 j}+\cdots a_{n} p_{n j}
$$

- Suppose $a^{T}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satifies reversibility condition for all j, k
- $a_{j} \cdot p_{j k}=a_{k} \cdot p_{k j}$
- $\sum_{k} a_{j} \cdot p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$

$$
\left[\begin{array}{lll}
\ldots & \ldots
\end{array}\right]=
$$

- $a_{j} \sum_{k} p_{j k}=\sum_{k} a_{k} \cdot p_{k j}$
- $a_{j} \cdot 1=\sum_{k} a_{k} \cdot p_{k j}$

- $a^{\top}=a^{\top} A$, so a^{\top} is the stationary distribution of A

Gibbs sampling

- State of a Bayesian network is a valuation of variables $\left(V_{1}, V_{2}, \ldots, V_{n}\right)$

Gibbs sampling

- State of a Bayesian network is a valuation of variables ($V_{1}, V_{2}, \ldots, V_{n}$
- Move probabilistically from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $s_{k}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

Gibbs sampling

- State of a Bayesian network is a valuation of variables ($V_{1}, V_{2}, \ldots, V_{n}$
- Move probabilistically from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $s_{k}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- Allow such a move only when s_{j}, s_{k} differ at exactly one position
- $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$
- $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

Gibbs sampling

- State of a Bayesian network is a valuation of variables ($V_{1}, V_{2}, \ldots, V_{n}$
- Move probabilistically from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $s_{k}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- Allow such a move only when s_{j}, s_{k} differ at exactly one position
- $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$
- $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$
- Sampling algorithm
- Current state is $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Choose i uniformly in $[1, n]$
- Resample x_{i} given current values $\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$

Gibbs sampling

- State of a Bayesian network is a valuation of variables ($V_{1}, V_{2}, \ldots, V_{n}$
- Move probabilistically from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $s_{k}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- Allow such a move only when s_{j}, s_{k} differ at exactly one position

■ $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$
$\square s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}\right.$ y$\left.y_{i}, x_{i+1}, \ldots, x_{n}\right)$

- Sampling algorithm

$$
\text { could be } x_{i}
$$

■ Current state is $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- Choose i uniformly in $[1, n]$

■ Resample x_{i} given current values $\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$

- Need to compute $P\left[y_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$

Markov blanket

- Recall $M B(X)$ - Markov blanket of X
- Parents (X)
- Children(X)
- Parents of Children (X)
- $X \perp \neg M B(X) \mid M B(X)$

Markov blanket

- Recall $M B(X)$ - Markov blanket of X
- Parents (X)
- Children(X)
- Parents of Children (X)
- $X \perp \neg M B(X) \mid M B(X)$
- Need to compute

$$
P\left[y_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]
$$

Markov blanket

- Recall $M B(X)$ - Markov blanket of X
- Parents (X)
- Children(X)
- Parents of Children (X)
- $X \perp \neg M B(X) \mid M B(X)$
- Need to compute

$$
P\left[y_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]
$$

■ $\left.x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$ fixes $M B\left(V_{i}\right)$

Markov blanket

- Recall $M B(X)$ - Markov blanket of X
- Parents (X)
- Children (X)
- Parents of Children (X)
- $X \perp \neg M B(X) \mid M B(X)$
- Need to compute

$$
P\left[y_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]
$$

■ $\left.x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$ fixes $M B\left(V_{i}\right)$

- Can compute $P\left[y_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$ given conditional probability tables in the

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$
■ Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$

Gibbs sampling

- Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$
- Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$
- $P_{j k}=\frac{1}{n} P\left[y_{i} \mid \bar{x}\right]$
$\widehat{C P i c k ~ i ~} \in[1, n]$

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

■ Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$

- $P_{j k}=\frac{1}{n} P\left[y_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{k}\right)}{P(\bar{x})}$

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

■ Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$
■ $P_{j k}=\frac{1}{n} P\left[y_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{k}\right)}{P(\bar{x})}=\frac{1}{n} \frac{\pi_{k}}{P(\bar{x})}$

Gibbs sampling

- Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

■ Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$

- $P_{j k}=\frac{1}{n} P\left[y_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{k}\right)}{P(\bar{x})}=\frac{1}{n} \frac{\pi_{k}}{P(\bar{x})} \longleftarrow$

■ Likewise $P_{k j}=\frac{1}{n} P\left[x_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{j}\right)}{P(\bar{x})}=\frac{1}{n} \frac{\pi_{j}}{P(\bar{x})}$

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to
$s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$
■ Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$

- $P_{j k}=\frac{1}{n} P\left[y_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{k}\right)}{P(\bar{x})}$

■ Likewise $P_{k j}=\frac{1}{n} P\left[x_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{j}\right)}{P(\bar{x})}=D$
\forall_{1}, k

- Therefore, $\frac{P_{k k}}{P_{k j}}=\frac{P\left(s_{k}\right)}{P\left(s_{j}\right)} \Rightarrow P\left(s_{j}\right) \cdot P_{j k}=P\left(s_{k}\right) P_{k j}$
$\frac{\Delta}{\pi_{j}} \quad \frac{\Delta}{\pi_{k}}$

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

■ Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$
■ $P_{j k}=\frac{1}{n} P\left[y_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{k}\right)}{P(\bar{x})}=\frac{1}{n} \frac{\pi_{k}}{P(\bar{x})}$
■ Likewise $P_{k j}=\frac{1}{n} P\left[x_{i} \mid \bar{x}\right]=\frac{1}{n} \frac{P\left(s_{j}\right)}{P(\bar{x})}=\frac{1}{n} \frac{\pi_{j}}{P(\bar{x})}$

- Therefore, $\frac{P_{j k}}{P_{k j}}=\frac{\pi_{k}}{\pi_{j}}$
$■$ Hence, $\pi_{j} \cdot P_{j k}=\pi_{k} \cdot P_{k j}$

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

■ $\pi_{j} \cdot P_{j k}=\pi_{k} \cdot P_{k j}$
■ We have created a reversible Markov chain whose stationary distribution provides the true probabilities of the original Bayesian network!

Gibbs sampling

■ Move from $s_{j}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to $s_{k}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)$

■ $\pi_{j} \cdot P_{j k}=\pi_{k} \cdot P_{k j}$
■ We have created a reversible Markov chain whose stationary distribution provides the true probabilities of the original Bayesian network!

■ Gibbs sampling is a special case of the more general Metropolis-Hastings algorithm

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
- Generate an entirely new sample state $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
- Generate an entirely new sample state $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

■ First generate y_{1}, given $x_{2}, x_{3}, \ldots, x_{n}$

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
- Generate an entirely new sample state $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

■ First generate y_{1}, given $x_{2}, x_{3}, \ldots, x_{n}$

- Then generate y_{2}, given $y_{1}, x_{3}, \ldots, x_{n}$

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
- Generate an entirely new sample state $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

■ First generate y_{1}, given $x_{2}, x_{3}, \ldots, x_{n}$

- Then generate y_{2}, given $y_{1}, x_{3}, \ldots, x_{n}$
- Then generate y_{n}, given $y_{1}, y_{2}, \ldots, y_{n-1}$

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
- Generate an entirely new sample state $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- First generate y_{1}, given $x_{2}, x_{3}, \ldots, x_{n}$
- Then generate y_{2}, given $y_{1}, x_{3}, \ldots, x_{n}$
- ...
- Then generate y_{n}, given $y_{1}, y_{2}, \ldots, y_{n-1}$

Standard Gibbs sampler - again a reversible Markov chain

Approximate inference using Markov chains

- Bayesian network has variables $V_{1}, V_{2}, \ldots, V_{n}$

■ Use Gibbs sampling to set up a a reversible Markov chain

- Stationary distribution will assign to state s the probability $P(s)$ in the
 Bayesian network

