Lecture 17: 14 March, 2023

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2023

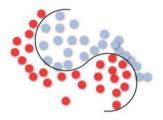
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)

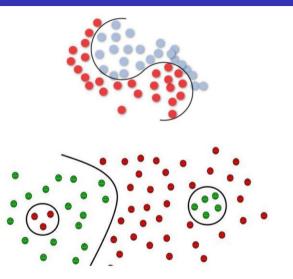
A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
 - Each class is a connected region
 - A single curve can separate them

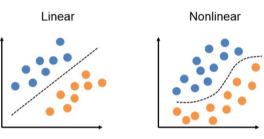


A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
 - Each class is a connected region
 - A single curve can separate them
- More complex scenario
 - Classes form multiple connected regions
 - Need multiple separators

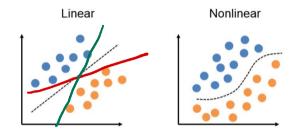


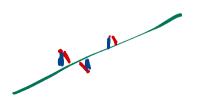
Simplest case — linearly separable data



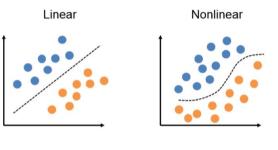
э

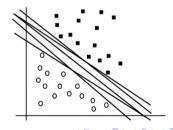
- Simplest case linearly separable data
- Dual of linear regression
 - Find a line that passes close to a set of points
 - Find a line that separates the two sets of points



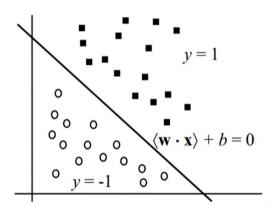


- Simplest case linearly separable data
- Dual of linear regression
 - Find a line that passes close to a set of points
 - Find a line that separates the two sets of points
- Many lines are possible
 - How do we find the best one?
 - What is a good notion of "cost" to optimize?



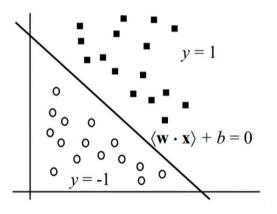


■ Each input *x* has *n* attributes ⟨*x*₁, *x*₂,...,*x*_n⟩

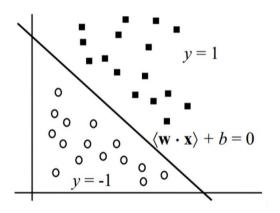


э

- Each input x has n attributes ⟨x₁, x₂,..., x_n⟩
- Linear separator has the form $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$

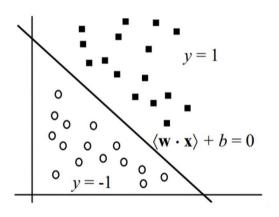


- Each input x has n attributes ⟨x₁, x₂,...,x_n⟩
- Linear separator has the form $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$
- Classification criterion
 - $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b > 0$, classify yes, +1
 - $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b < 0$, classify no, -1



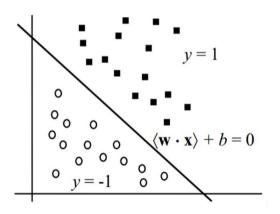
Dot product $w \cdot x$

 $\langle w_1, w_2, \ldots, w_n \rangle \cdot \langle x_1, x_2, \ldots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$



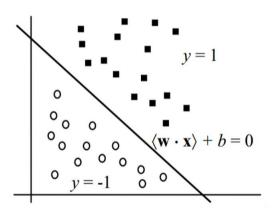
э

- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$

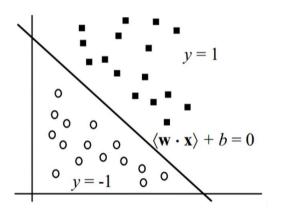


э

- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$
- Rename bias b as w_0 , create fictitious $x_0 = 1$



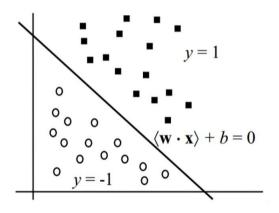
- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$
- Rename bias b as w_0 , create fictitious $x_0 = 1$
- Equation becomes w · x > 0, w · x < 0



Perceptron algorithm

(Frank Rosenblatt, 1958)

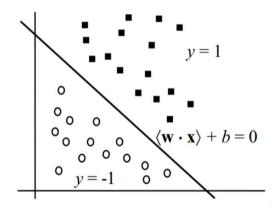
- Each training input is (x_i, y_i) , where $x_i = \langle x_{i_1}, x_{i_2}, \dots, x_{i_n} \rangle$ and $y_i = +1$ or -1
- Need to find $w = \langle w_0, w_1, \dots, w_n \rangle$
 - Recall $x_{i_0} = 1$, always



(Frank Rosenblatt, 1958)

- Each training input is (x_i, y_i) , where $x_i = \langle x_{i_1}, x_{i_2}, \dots, x_{i_n} \rangle$ and $y_i = +1$ or -1
- Need to find $w = \langle w_0, w_1, \dots, w_n \rangle$
 - Recall $x_{i_0} = 1$, always
 - Initialize $w = \langle 0, 0, \dots, 0 \rangle$

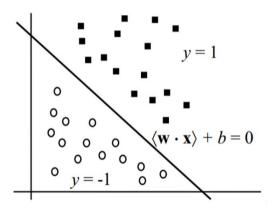
While there exists x_i , y_i such that $y_i = +1$ and $w \cdot x_i < 0$, or $y_i = -1$ and $w \cdot x_i > 0$



Update w to $w + x_i y_i$

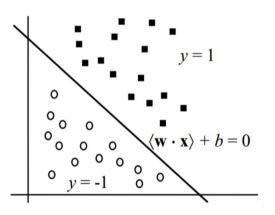
Perceptron algorithm

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input



Perceptron algorithm ...

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

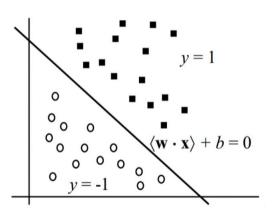


Perceptron algorithm ...

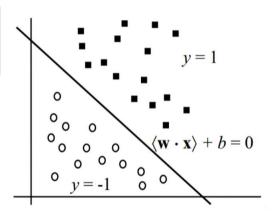
- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

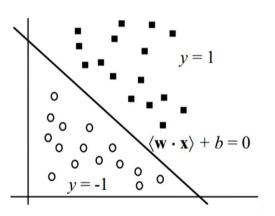


If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator



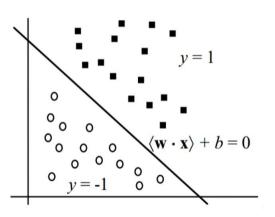
If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

Termination time depends on two factors



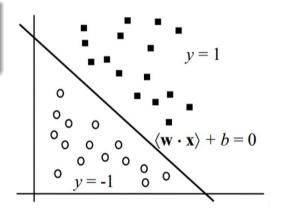
If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

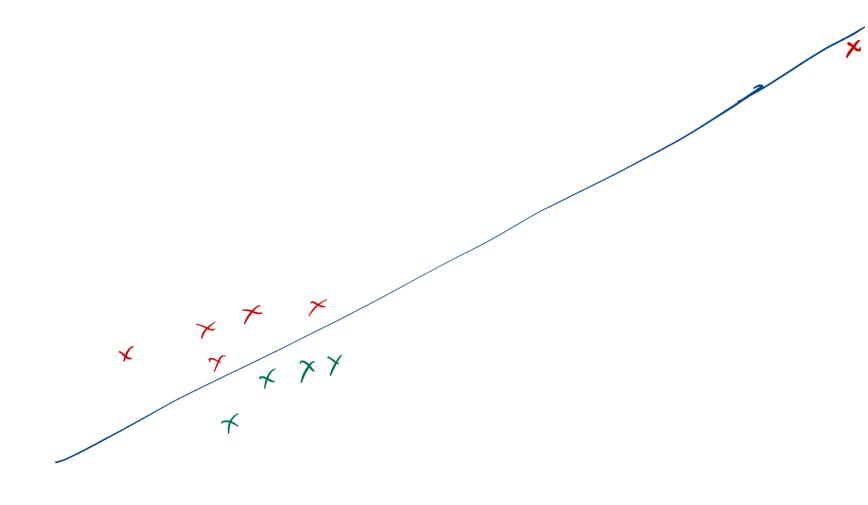
- Termination time depends on two factors
 - Width of the band separating the positive and negative points
 - Narrow band takes longer to converge



If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
 - Width of the band separating the positive and negative points
 - Narrow band takes longer to converge
 - Magnitude of the x values
 - Larger spread of points takes longer to converge





If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution w with $(w \cdot x_i)y_i > 0$ for all i in at most $r^2 |w^*|^2$ updates, where $r = \max |x_i|$. W* X2 5-1 hidh ~ ____

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

• Assume w^* exists. Keep track of two quantities: $w^{\top}w^*$, $|w|^2$.

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

■ Assume w^* exists. Keep track of two quantities: $w^\top w^*$, $|w|^2$. ■ Each update increases $w^\top w^*$ by at least 1. $(w + x_i y_i)^\top w^* = w^\top w^* + x_i^\top y_i w^* \ge w^\top w^* + 1$ $y_{\iota} = -1$ but $W \cdot x_i \ge 0$ $y_{\iota} = -1$ but $W \cdot x_i \ge 0$ $y_{\iota} = -1$ but $W \cdot x_i \ge 0$

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $= \max |x_i|$.

• Assume w^* exists. Keep track of two quantities: $w^\top w^*$, $|w|^2$.

• Each update increases $w^{\top}w^*$ by at least 1.

$$(w + x_i y_i)^{\top} w^* = w^{\top} w^* + x_i^{\top} y_i w^* \ge w^{\top} w^* + 1$$

Each update increases $|w|^2$ by at most r^2 $(w + x_i y_i)^\top (w + x_i y_i) = |w|^2 + 2x_i^\top y_i w + |x_i y_i|^2 \le |w|^2 + |x_i|^2 \le |w|^2 + r^2$ Note that we update only when $x_i^\top y_i w < 0$

NJ.7 CO

Assume Perceptron Algorithm makes *m* updates

э

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \geq m$, $|w|^2 \leq mr^2$

3

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$ $m \le |w||w^*|$

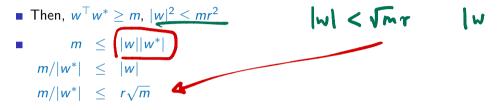
3

2 E

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$ $m \le |w||w^*|$ $m/|w^*| \le |w|$ $w \le \Theta \le 1$

▶ < ∃ > ∃
● < < >>

Assume Perceptron Algorithm makes *m* updates



3

▶ < ∃ ▶</p>

Assume Perceptron Algorithm makes *m* updates

Then,
$$w^{\top}w^* \ge m$$
, $|w|^2 \le mr^2$
 $m \le |w||w^*|$
 $m/|w^*| \le |w|$
 $m/|w^*| \le r\sqrt{m}$
 $\sqrt{m} \le r|w^*|$

3

→ < ∃→

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

```
  m \leq |w||w^*| 
  m/|w^*| \leq |w| 
  m/|w^*| \leq r\sqrt{m} 
  \sqrt{m} \leq r|w^*| 
  m \leq r^2|w^*|^2
```

<=>> ≥ < <<>></></></>

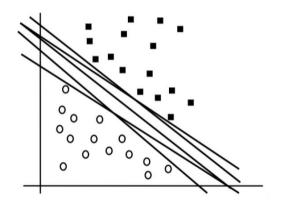
- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$
- $m \leq |w||w^*|$ $m/|w^*| \leq |w|$ $m/|w^*| \leq r\sqrt{m}$ $\sqrt{m} \leq r|w^*|$ $m \leq r^2|w^*|^2$

• Note (for later) that final w is of the form $\sum n_i x_i$

Linear separators

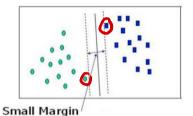
Simplest case — linearly separable data

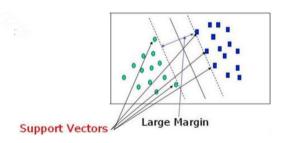
- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
 - Does the Perceptron algorithm find the best one?
 - What is a good notion of "cost" to optimize?



Margin

- Each separator defines a margin
 - Empty corridor separating the points
 - Separator is the centre line of the margin
- Wider margin makes for a more robust classifier
 - More gap between the classes
- Optimum classifier is one that maximizes the width of its margin
- Margin is defined by the training data points on the boundary
 - Support vectors

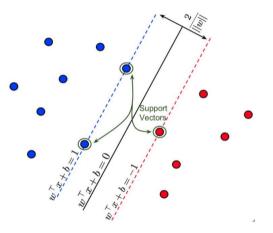




Finding a maximum margin classifier

- Recall our original linear classifier w₁x₁ + w₂x₂ + ··· w_nx_n + b > 0, classify yes, +1 w₁x₁ + w₂x₂ + ··· w_nx_n + b < 0, classify no, -1
- Scale margin so that separation is 1 on either side

```
w_1x_1 + w_2x_2 + \cdots + w_nx_n + b > 1, classify
yes, +1
w_1x_1 + w_2x_2 + \cdots + w_nx_n + b < -1, classify
no, -1
```

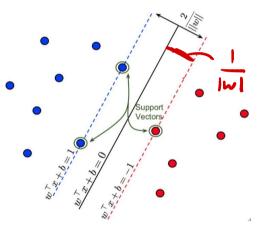


Finding a maximum margin classifier

 Scale margin so that separation is 1 on either side

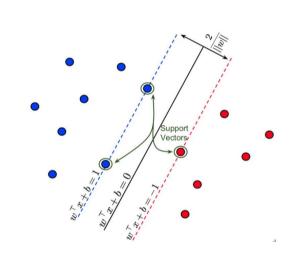
```
 \begin{split} &w_1x_1+w_2x_2+\cdots w_nx_n+b>1, \text{ classify}\\ &\text{yes, }+1\\ &w_1x_1+w_2x_2+\cdots w_nx_n+b<-1, \text{ classify}\\ &\text{no, }-1 \end{split}
```

• Using Pythagoras's theorem, perpendicular distance to nearest support vector is $\frac{1}{\|w\|}$, where $\|w\| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$



Optimization problem

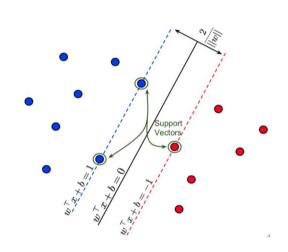
• Want to maximize the overall margin $\frac{2}{||w||}$



Optimization problem

• Want to maximize the overall margin $\frac{2}{\|W\|}$

• Equivalently, minimize $\frac{\|w\|}{2}$

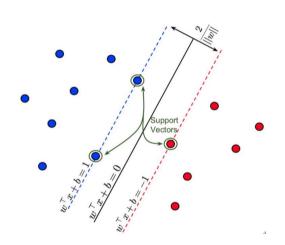


Optimization problem

• Want to maximize the overall margin $\frac{2}{\|w\|}$

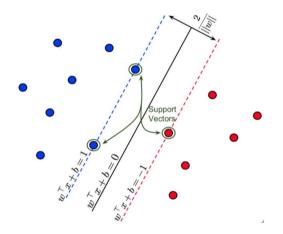
- Equivalently, minimize $\frac{\|w\|}{2}$
- Also, w should classify each (x_i, y_i) correctly

 $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b > 1,$ if $y_i = 1$ $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b < -1,$ if $y_i = -1$



Minimize $\frac{\|w\|}{2}$

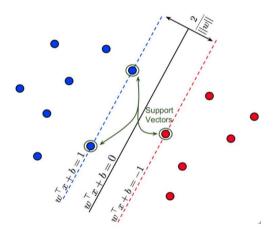
Subject to $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b > 1$, if $y_i = 1$ $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b < -1$, if $y_i = -1$



э

Minimize $\frac{\|w\|}{2}$ Subject to $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b > 1$, if $y_i = 1$ $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b < -1$, if $y_i = -1$

The constraints are linear

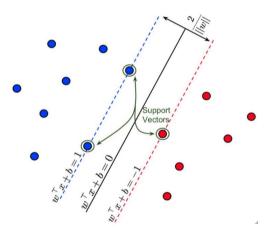


Lecture 17: 14 March, 2023

Minimize $\frac{||w||}{2}$ Subject to

 $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b > 1$, if $y_i = 1$ $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b < -1$, if $y_i = -1$

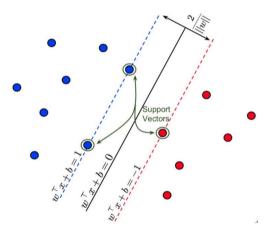
- The constraints are linear
- The objective function is not linear $||w|| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$



Minimize $\frac{\|w\|}{2}$

Subject to $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b > 1$, if $y_i = 1$ $w_1 x_1^i + w_2 x_2^i + \cdots + w_n x_n^i + b < -1$, if $y_i = -1$

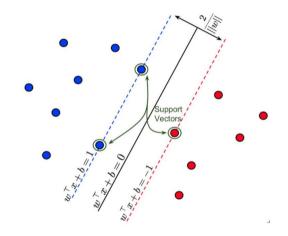
- The constraints are linear
- The objective function is not linear $||w|| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$
- This is a quadratic optimization problem, not linear programming



Lecture 17: 14 March, 2023

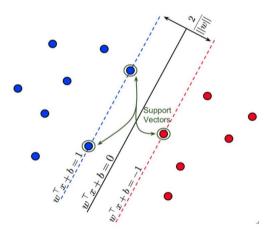
Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques



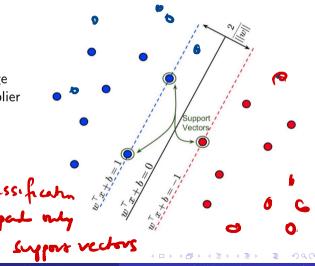
Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers α₁, α₂, ..., α_N, one multiplier per training input
- α_i is non-zero iff x_i is a support vector



Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers α₁, α₂, ..., α_N, one multiplier per training input
- α_i is non-zero iff x_i is a support vector
- Final classifier for new input z $sign\left[\sum_{i \in sv} y_i \alpha_i (x_i \cdot z) + b\right]$
- *sv* is set of support vectors



Madhavan Mukund

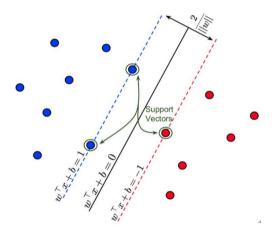
Lecture 17: 14 March, 2023

Support Vector Machine (SVM)

$$\operatorname{sign}\left[\sum_{i\in sv} y_i \alpha_i (x_i \cdot z) + b\right]$$

Solution depends only on support vectors

 If we add more training data away from support vectors, separator does not change

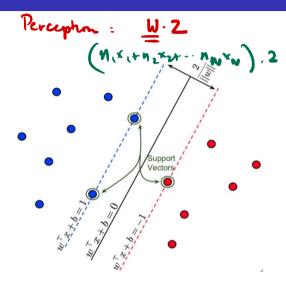


Support Vector Machine (SVM)

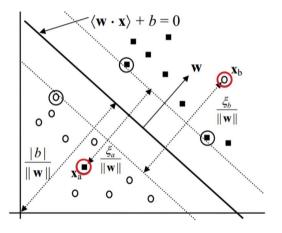
sign
$$\left[\sum_{i \in sv} y_i \alpha (x_i \cdot z) + b\right]$$

Solution depends only on support vectors

- If we add more training data away from support vectors, separator does not change
- Solution uses dot product of support vectors with new point
 - Will be used later, in the non-linear case



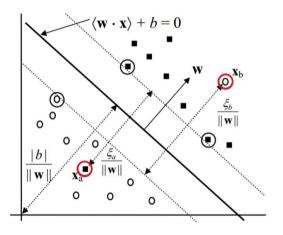
- Some points may lie on the wrong side of the classifier
- How do we account for these?



- Some points may lie on the wrong side of the classifier
- How do we account for these?
- Add an error term to the classifier requirement
- Instead of
 - $w \cdot x + b > 1$, if $y_i = 1$ $w \cdot x + b < -1$, if $y_i = -1$

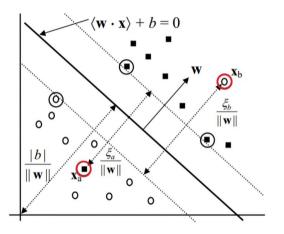
we have

 $w \cdot x + b > 1 - \xi_i$, if $y_i = 1$ $w \cdot x + b < -1 + \xi_i$, if $y_i = -1$

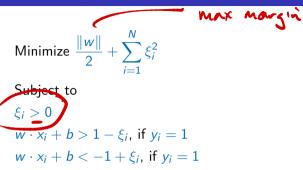


 $w \cdot x + b > 1 - \xi_i$, if $y_i = 1$ $w \cdot x + b < -1 + \xi_i$, if $y_i = -1$

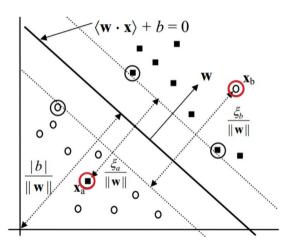
- Error term always non-negative,
- If the point is correctly classified, error term is 0
- Soft margin some points can drift across the boundary
- Need to account for the errors in the objective function
 - Minimize the need for non-zero error terms



Soft margin optimization



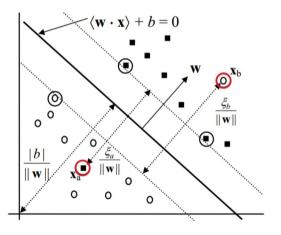
- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic



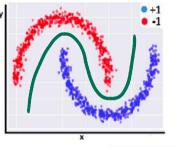
Soft margin optimization

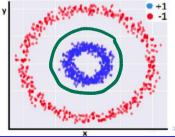
- Can again be solved using convex optimization theory
- Form of the solution turns out to be the same as the hard margin case
 - Expression in terms of Lagrange multipliers α_i
 - Only terms corresponding to support vectors are actively used

$$\operatorname{sign}\left[\sum_{i\in sv} y_i \alpha_i (x_i \cdot z) + b\right]$$

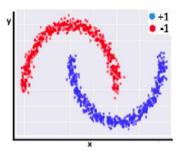


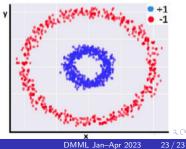
How do we deal with datasets where the separator is a complex shape?





- How do we deal with datasets where the separator is a complex shape?
- Geometrically transform the data
 - Typically, add dimensions





- How do we deal with datasets where the separator is a complex shape?
- Geometrically transform the data
 - Typically, add dimensions
- For instance, if we can "lift" one class, we can find a planar separator between levels

