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D-Separation

Check if X ? Y | Z

Dependence should be blocked on

every trail from X to Y

Each undirected path from X to Y
is a sequence of basic trails

For (a), (b), (c), need Z present

For (d), need Z absent

In general, V-structure includes

descendants of the bottom node

x and y are D-separated given z if all trails are blocked

Variation of breadth first search (BFS) to check if y is reachable from x through

some trail

Extends to sets — each x 2 X is D-separated from each y 2 Y
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Markov blanket

MB(X ) — Markov blanket of X

Parents(X )

Children(X )

Parents of Children(X )

X ? ¬MB(X ) | MB(X )
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Computing with probabilistic graphical models

John and Mary call Pearl. What is

the probability that there has been a

burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint

probabilities

Reorder variables appropriately,

topological order of graph
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Computing with probabilistic graphical models

P(m, j , b) = P(b)
1X

e=0

P(e)
1X

a=0

P(a | b, e)P(m | a)P(j | a)

Construct the computation

tree

Use dynamic programming

to avoid duplicated

computations

However, exact inference is

NP-complete, in general

Instead, approximate

inference through sampling
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Approximate inference

Generate random samples

(b, e, a,m, j), count to estimate

probabilities

Random samples should respect

conditional probabilities

Fix parents of x before generating x

Generate in topological order

Generate b, e with probabilities

P(b) and P(e)

Generate a with probability

P(a | b, e)
Generate j , m with probabilities

P(j | a), P(m | a)
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Approximate inference

We are interested in P(b | j ,m)

Samples with ¬j or ¬m are useless

Can we sample more e�ciently?
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Rejection sampling

P(Rain | Cloudy ,Wet Grass)

Topological order

Generate Cloudy

Generate Sprinkler , Rain

Generate Wet Grass

If we start with ¬Cloudy , sample is

useless

Immediately stop and reject this

sample — rejection sampling

General problem with low probability

situation — many samples are

rejected
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Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5⇥ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

P
si has rain wiP
1jN wj
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Approximate inference using Markov chains

Markov chains

Finite set of states, with transition probabilities between states

For us, a state will be an assignment of values to variables

A three state Markov Chain

1

2 3

1
2

1
2

1
1
2

1
2

Represent using a transition matrix — stochastic

A =

2

64

0
1
2

1
2

1 0 0

1
2

1
2 0

3

75

P[j ] is probability of being in state j

Start in state 1, so initially P =

2

4
1

0

0

3

5
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Markov chains . . .

After one step:

P>A =
⇥
1 0 0

⇤
2

64

0
1
2

1
2

1 0 0

1
2

1
2 0

3

75 =
⇥
0

1
2

1
2

⇤

After second step:

⇥
0

1
2

1
2

⇤
2

64

0
1
2

1
2

1 0 0

1
2

1
2 0

3

75 =
⇥

3
4

1
4 0

⇤

After k steps, P[j ] is probability of being in

state j

Continuing our example,

⇥
3
4

1
4 0

⇤
!

⇥
1
4

3
8

3
8

⇤
!

⇥
9
16

5
16

1
8

⇤

1

2 3

1
2

1
2

1
1
2

1
2
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Ergodicity

Is it the case that P[j ] > 0 for all j continuously,
after some point?

Markov chain A is ergodic if there is some t0 such

that for every P , for all t > t0, for every j ,
(P>At

)[j ] > 0.

No matter where we start, after t > t0 steps, every

state has a nonzero probability of being visited in

step t

Properties of ergodic Markov chains

There is a stationary distribution ⇡⇤
, (⇡⇤

)
>A = ⇡⇤

⇡⇤ is a left eigenvector of A

For any starting distribution P , lim
t!1

P>At
= ⇡⇤

1

2 3

1
2

1
2

1
1
2

1
2
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There is a stationary distribution ⇡⇤
, (⇡⇤

)
>A = ⇡⇤

⇡⇤ is a left eigenvector of A

For any starting distribution P , lim
t!1

P>At
= ⇡⇤
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Ergodicity . . .

How can ergodicity fail?

Starting from i , we reach a set of states from which

there is no path back to i

We have a cycle i ! j ! k ! i ! j ! k · · ·, so we

can only visit some states periodically

Su�cient conditions for ergodicity

Irreducibility: When viewed as a directed graph, A
is strongly connected

For all states i , j , there is a path from i to j and a

path from j to i

Aperiodicity: For any pair of vertices i , j , the gcd of

the lengths of all paths from i to j is 1

In particular, paths (loops) from i to i do not all

have lengths that are multiples of some k � 2 —

prevents bad cycles
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Ergodicity . . .

Can e�ciently approximate lim
t!1

P>At

by repeated squaring: P>A2
, P>A4

,

P>A8
, . . . , P>A2k

, . . .

Mixing time — how fast this

converges to ⇡⇤

Stationary distribution represents

fraction of visits to each state in a long

enough execution

Can we create a Markov chain from a

Bayesian network so that the stationary

distribution is meaningful?
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Approximate inference using Markov chains

Bayesian network has variables

v1, v2, . . . , vn

Each assignment of values to the

variables is a state

Set up a Markov chain based on these

states

Stationary distribution should assign to

state s the probability P(s) in the

Bayesian network

How to reverse engineer the transition

probabilities to achieve this?
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