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Market-Basket Analysis

Set of items I = {i1, i2, . . . , iN}

Set of transactions T = {t1, t2, . . . , tM}
A transaction is a set t ✓ I of items

Identify association rules X ! Y

X ,Y ✓ I , X \ Y = ;
If X ✓ tj then it is likely that Y ✓ tj

Two thresholds

How frequently does X ✓ tj imply Y ✓ tj?

How significant is this pattern overall?
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Setting thresholds

For Z ✓ I , Z .count = |{tj | Z ✓ tj}|

How frequently does X ✓ tj imply Y ✓ tj?

Fix a confidence level �

Want
(X [ Y ).count

X .count
� �

How significant is this pattern overall?

Fix a support level �

Want
(X [ Y ).count

M
� �

Given sets of items I and transactions T , with
confidence � and support �, find all valid
association rules X ! Y
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Frequent itemsets

X ! Y is interesting only if (X [ Y ).count � � ·M

First identify all frequent itemsets

Z ✓ I such that Z .count � � ·M

Näıve strategy: maintain a counter for each Z

For each tj 2 T
For each Z ✓ tj

Increment the counter for Z

After scanning all transactions, keep Z with
Z .count � � ·M

Need to maintain 2|I | counters

Infeasible amount of memory

Can we do better?
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Sample calculation

Let’s assume a bound on each ti 2 T

No transaction has more than 10 items

Say N = |I | = 106, M = |T | = 109, � = 0.01

Number of possible subsets to count is
10X

i=1

✓
106

i

◆

A singleton subset {x} that is frequent is an item x that
appears in at least 107 transactions

Totally, T contains at most 1010 items

At most 1010/107 = 1000 items are frequent!

How can we exploit this?
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Apriori

Clearly, if Z is frequent, so is every subset Y ✓ Z

We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset Y ◆ Z can be
frequent

For instance, in our earlier example, every frequent
itemset must be built from the 1000 frequent items

In particular, for any frequent pair {x , y}, both {x} and
{y} must be frequent

Build frequent itemsets bottom up, size 1,2,. . .
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Apriori algorithm

Fi : frequent itemsets of size i — Level i

F1: Scan T , maintain a counter for each x 2 I

C2 = {{x , y} | x , y 2 F1}: Candidates in level 2

F2: Scan T , maintain a counter for each X 2 C2

C3 = {{x , y , z} | {x , y}, {x , z}, {y , z} 2 F2}

F3: Scan T , maintain a counter for each X 2 C3

. . .

Ck = subsets of size k , every (k�1)-subset is in Fk�1

Fk : Scan T , maintain a counter for each X 2 Ck

. . .
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Apriori algorithm

Ck = subsets of size k , every (k�1)-subset is in Fk�1

How do we generate Ck?

Näıve: enumerate subsets of size k and check each one

Expensive!

Observation: Any C 0
k ◆ Ck will do as a candidate set

Items are ordered: i1 < i2 < · · · < iN

List each itemset in ascending order — canonical representation

Merge two (k�1)-subsets if they di↵er in last element

X = {i1, i2, . . . , ik�2, ik�1}
X 0 = {i1, i2, . . . , ik�2, i 0k�1}
Merge(X ,X 0) = {i1, i2, . . . , ik�2, ik�1, i 0k�1}
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Apriori algorithm

Merge(X ,X 0) = {i1, i2, . . . , ik�2, ik�1, i 0k�1}
X = {i1, i2, . . . , ik�2, ik�1}
X 0 = {i1, i2, . . . , ik�2, i 0k�1}

C 0
k = {Merge(X ,X 0) | X ,X 0 2 Fk�1}

Claim Ck ✓ C 0
k

Suppose Y = {i1, i2, . . . , ik�1, ik} 2 Ck

X = {i1, i2, . . . , ik�2, ik�1} 2 Fk�1 and
X 0 = {i1, i2, . . . , ik�2, ik} 2 Fk�1

Y = Merge(X ,X 0) 2 C 0
k

Can generate C 0
k e�ciently

Arrange Fk�1 in dictionary order

Split into blocks that di↵er on last element

Merge all pairs within each block
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Apriori algorithm
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Apriori algorithm

C1 = {{x} | x 2 I}

F1 = {Z | Z 2 C1,Z .count � � ·M}

For k 2 {2, 3, . . .}
C 0
k = {Merge(X ,X 0) | X ,X 0 2 Fk�1}

Fk = {Z | Z 2 C 0
k ,Z .count � � ·M}

When do we stop?

k exceeds the size of the largest transaction

Fk is empty

Next step: From frequent itemsets to association rules
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Association rules

Given sets of items I and transactions T , with
confidence � and support �, find all valid association
rules X ! Y

X ,Y ✓ I , X \ Y = ;

(X [ Y ).count

X .count
� �

(X [ Y ).count

M
� �

For a rule X ! Y to be valid, X [ Y should be a
frequent itemset

Apriori algorithm finds all Z ✓ I such that
Z .count � � ·M
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Association rules

Näıve strategy

For every frequent itemset Z

Enumerate all pairs X ,Y ✓ Z , X \ Y = ;

Check
(X [ Y ).count

X .count
� �

Can we do better?

Su�cient to check all partitions of Z

Suppose X ,Y ✓ Z , X ! Y is a valid association rule,
but X [ Y is a proper subset of Z

X [ Y = Z 0 ( Z

Z 0 is also a frequent itemset (a priori)

X ,Y partitions Z 0
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Näıve strategy

For every frequent itemset Z

Enumerate all pairs X ,Y ✓ Z , X \ Y = ;

Check
(X [ Y ).count

X .count
� �

Can we do better?

Su�cient to check all partitions of Z

Suppose X ,Y ✓ Z , X ! Y is a valid association rule,
but X [ Y is a proper subset of Z

X [ Y = Z 0 ( Z

Z 0 is also a frequent itemset (a priori)

X ,Y partitions Z 0

Madhavan Mukund Lecture 2: 10 January, 2023 DMML Jan–Apr 2023 12 / 16

&77



Association rules
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Association rules

Su�cient to check all partitions of Z

Suppose Z = X ] Y , X ! Y is a valid rule and y 2 Y

What about (X [ {y}) ! Y \ {y}?

Know
(X [ Y ).count

X .count
� �

Check
(X [ Y ).count

(X [ {y}).count � �

X .count � (X [ {y}).count, always

Second fraction has smaller denominator, so
(X [ {y}) ! Y \ {y} is also a valid rule

Observation: Can use apriori principle again!
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Apriori for association rules

If X ! Y is a valid rule, and y 2 Y ,
(X [ {y}) ! Y \ {y} must also be a valid rule

If X ! Y is not a valid rule, and x 2 X ,
(X \ {x}) ! Y [ {x} cannot be a valid rule

Start by checking rules with single element on the right

Z \ {z} ! {z}

For X ! {x , y} to be a valid rule, both
(X [ {x}) ! {y} and (X [ {y}) ! {x} must be valid

Explore partitions of each frequent itemset “level by
level”
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Association rules for classification

Classify documents by topic

Consider the table on the right

Items are regular words and topics

Documents are transactions — set of
words and one topic

Look for association rules of a special
form

{student, school} ! {Education}
{game, team} ! {Sports}

Right hand side always a single topic

Class Association Rules

Words in document Topic
student, teach, school Education
student, school Education
teach, school, city, game Education
cricket, football Sports
football, player, spectator Sports
cricket, coach, game, team Sports
football, team, city, game Sports
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{game, team} ! {Sports}

Right hand side always a single topic

Class Association Rules

Words in document Topic
student, teach, school Education
student, school Education
teach, school, city, game Education
cricket, football Sports
football, player, spectator Sports
cricket, coach, game, team Sports
football, team, city, game Sports
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Summary

Market-basket analysis searches for correlated items across transactions

Formalized as association rules

Apriori principle helps us to e�ciently

identify frequent itemsets, and

split these itemsets into valid rules

Class association rules — simple supervised learning model
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