Lecture 1: 5 January, 2023

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2023

What is this course about?

Data Mining

- Identify "hidden" patterns in data
- Also data collection, cleaning, uniformization, storage
 - Won't emphasize these aspects

What is this course about?

Data Mining

- Identify "hidden" patterns in data
- Also data collection, cleaning, uniformization, storage
 - Won't emphasize these aspects

Machine Learning

- "Learn" mathematical models of processes from data
- Supervised learning learn from experience
- Unsupervised learning search for structure

Reinforcement Learning

Madhavan Mukund

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

Classification Prediction

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

"Manually" labelled historical data is available

- Past exam scores: model exams and board exam
- Customer profiles: age, income, ..., repayment/default status
- Patient health records, diagnosis

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

"Manually" labelled historical data is available

- Past exam scores: model exams and board exam
- Customer profiles: age, income, ..., repayment/default status
- Patient health records, diagnosis

Historical data \rightarrow model to predict outcome

What are we trying to predict?

Numerical values

- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

What are we trying to predict?

Numerical values

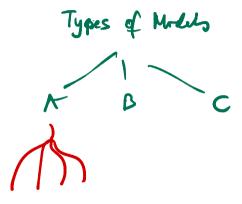
- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

Categories

- Email: is this message junk?
- Insurance claim: pay out, or check for fraud?
- Credit card approval: reject, normal, premium

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned



How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned
- Fit parameters based on input data
 - Different historical data produces different models
 - e.g., each user's junk mail filter fits their individual preferences

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned
- Fit parameters based on input data
 - Different historical data produces different models
 - e.g., each user's junk mail filter fits their individual preferences
- Study different models, how they are built from historical data

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

Unsupervised learning

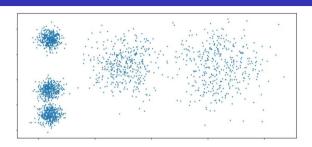
- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

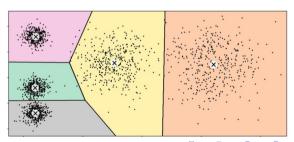
Customer segmentation

- Different types of newspaper readers
- Age vs product profile of retail shop customers
- Viewer recommendations on video platform

Clustering

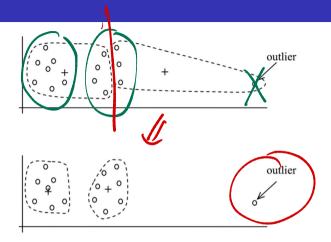
- Organize data into "similar" groups — clusters
- Define a similarity measure, or distance function
- Clusters are groups of data items that are "close together"





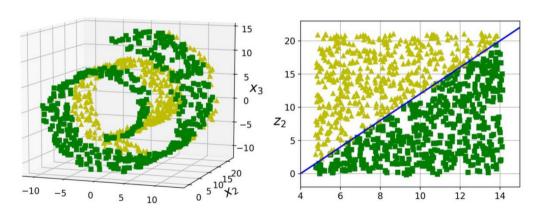
Outliers

- Outliers are anomalous values
 - Net worth of Jeff Bezos, Mukesh Ambani
- Outliers distort clustering and other analysis
- How can we identify outliers?



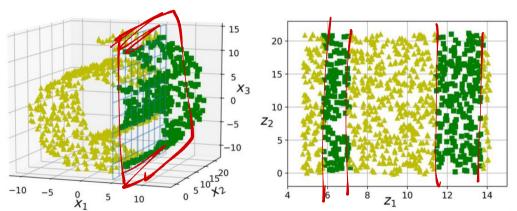
Preprocessing for supervised learning

Dimensionality reduction



Preprocessing for supervised learning

Need not be a good idea — perils of working blind!



Madhavan Mukund Lecture 1: 5 January, 2023 DMML Jan-Apr 2023 10 / 16

Summary

Machine Learning

- Supervised learning
 - Build predictive models from historical data
- Unsupervised learning
 - Search for structure
 - Clustering, outlier detection, dimensionality reduction

Summary

Machine Learning

- Supervised learning
 - Build predictive models from historical data
- Unsupervised learning
 - Search for structure
 - Clustering, outlier detection, dimensionality reduction

If intelligence were a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, . . .

Yann Le Cun, ACM Turing Award 2018

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns

Madhavan Mukund

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php
- Applies in more abstract settings
 - Items are concepts, basket is a set of concepts in which a student does badly
 - Students with difficulties in concept A also tend to misunderstand concept B
 - Items are words, transactions are documents

Formal setting

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$

Count per item is ignored

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$

Formal setting

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - How significant is this pattern overall?

■ For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$

14 / 16

Madhavan Mukund Lecture 1: 5 January, 2023 DMML Jan-Apr 2023

- For $Z \subseteq I$, Z.count = $|\{t_i \mid Z \subseteq t_i\}|$
- How frequently does $X \subseteq t_i$ imply $Y \subseteq t_i$?
 - Fix a confidence level χ ■ Fix a confidence level χ ■ Want $\frac{(X \cup Y).count}{X.count} \ge \chi$ Such that χ is a confidence level χ both χ and χ

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ

■ Want
$$\frac{(X \cup Y).count}{X.count} \ge \chi$$

- How significant is this pattern overall?
 - \blacksquare Fix a support level σ

■ Want
$$\frac{(X \cup Y).count}{M} \ge \sigma$$

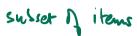
- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_i$ imply $Y \subseteq t_i$?
 - Fix a confidence level χ

■ Want
$$\frac{(X \cup Y).count}{X.count} \ge \chi$$

- How significant is this pattern overall?
 - \blacksquare Fix a support level σ
 - Want $\frac{(X \cup Y).count}{M} \ge \sigma$
- Given sets of items I and transactions T, with confidence χ and support σ , find all valid association rules $X \to Y$

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$



Xuy. const ≥ o

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$
- Naïve strategy: maintain a counter for each Z
 - For each $t_j \in T$ For each $Z \subseteq t_j$ Increment the counter for Z
 - After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$
- Naïve strategy: maintain a counter for each Z
 - For each $t_j \in T$ For each $Z \subseteq t_j$ Increment the counter for Z
 - After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$
- Need to maintair 2 | 1 | counters
 - Infeasible amount of memory
 - Can we do better?

better if lythm dictriany

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items

■ Say
$$N = |I| = 10^6$$
, $M = |T| = 10^9$, $\sqrt{c} = 0.01$

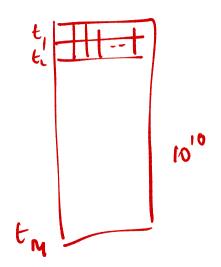
Number of possible subsets to count is $\sum_{i=1}^{10} \binom{10^6}{i}$

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$
 - Number of possible subsets to count is $\sum_{i=1}^{10} \binom{10^6}{i}$
- A singleton subset that is frequent is an item that appears in at least 10⁷ transactions

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$
 - Number of possible subsets to count is $\sum_{i=1}^{10} \binom{10^6}{i}$
- A singleton subset that is frequent is an item that appears in at least 10^7 transactions
- Totally, *T* contains at most 10¹⁰ items
- At most $10^{10}/10^7 = 1000$ items are frequent!
- How can we exploit this?



Madhavan Mukund Lecture 1: 5 January, 2023 DMML Jan-Apr 2023 16 / 16