# Lecture 8: 2 February, 2023 

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2023

## Linear regression

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Each input $x_{i}$ is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Add $x_{i}^{0}=1$ by convention
- $y_{i}$ is actual output
- How far away is our prediction $h_{\theta}\left(x_{i}\right)$ from the true answer $y_{i}$ ?
- Define a cost (loss) function

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Essentially, the sum squared error (SSE) ↔ Jushfed via MLE
- Divide by $n$, mean squared error (MSE)


## The non-linear case

- What if the relationship is not linear?



## The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic



## The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies



## The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies

■ Input $x_{i}:\left(x_{i_{1}}, x_{i_{2}}\right)$


## The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic

■ Non-linear: cross dependencies

■ Input $x_{i}:\left(x_{i_{1}}, x_{i_{2}}\right)$


- Quadratic dependencies:

$$
y=\theta_{0}+\underbrace{\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}}_{\text {linear }}+\underbrace{\theta_{11} x_{i_{1}}^{2}+\theta_{22} x_{i_{2}}^{2}+\theta_{12} x_{i_{1}} x_{i_{2}}}_{\text {quadratic }} \text { ) }
$$

## The non-linear case

- Recall how we fit a line $\left[\begin{array}{ll}1 & x_{i_{1}}\end{array}\right]\left[\begin{array}{l}\theta_{0} \\ \theta_{1}\end{array}\right]$



## The non-linear case

■ Recall how we fit a line

$$
\left[\begin{array}{ll}
1 & x_{i_{1}}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

- For quadratic, add new coefficients and expand parameters

$$
\left[\begin{array}{lll}
1 & x_{i_{1}} & x_{i_{1}}^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$



## The non-linear case

■ Input $\left(x_{i_{1}}, x_{i_{2}}\right)$


## The non-linear case

$\square$ Input $\left(x_{i_{1}}, x_{i_{2}}\right)$

- For the general quadratic case, we are adding new derived "features"

$$
\begin{aligned}
& x_{i_{3}}=x_{i_{1}}^{2} \\
& x_{i_{4}}=x_{i_{2}}^{2} \\
& x_{i_{5}}=x_{i_{1}} x_{i_{2}}
\end{aligned}
$$



## The non-linear case

■ Original input matrix
$\left[\begin{array}{ccc}1 & x_{1_{1}} & x_{1_{2}} \\ 1 & x_{2_{1}} & x_{2_{2}} \\ & \cdots & \\ 1 & x_{i_{1}} & x_{i_{2}} \\ & \cdots & \\ 1 & x_{n_{1}} & x_{n_{2}}\end{array}\right]$


## The non-linear case

- Expanded input matrix

$$
\left[\begin{array}{cccccc}
1 & x_{1_{1}} & x_{1_{2}} & x_{1_{1}}^{2} & x_{1_{2}}^{2} & x_{1_{1}} x_{1_{2}} \\
1 & x_{2_{1}} & x_{2_{2}} & x_{2_{1}}^{2} & x_{2_{2}}^{2} & x_{2_{1}} x_{2_{2}} \\
& \ldots & & & & \\
1 & x_{i_{1}} & x_{i_{2}} & x_{i_{1}}^{2} & x_{i_{2}}^{2} & x_{i_{1}} x_{i_{2}} \\
& \ldots & & & \\
1 & x_{n_{1}} & x_{n_{2}} & x_{n_{1}}^{2} & x_{n_{2}}^{2} & x_{n_{1}} x_{n_{2}}
\end{array}\right]
$$



## The non-linear case

- Expanded input matrix
$\left[\begin{array}{cccccc}1 & x_{1_{1}} & x_{1_{2}} & x_{1_{1}}^{2} & x_{1_{2}}^{2} & x_{1_{1}} x_{1_{2}} \\ 1 & x_{2_{1}} & x_{2_{2}} & x_{2_{1}}^{2} & x_{2_{2}}^{2} & x_{2_{1}} x_{2_{2}} \\ & \ldots & & & \\ 1 & x_{i_{1}} & x_{i_{2}} & x_{i_{1}}^{2} & x_{i_{2}}^{2} & x_{i_{1}} x_{i_{2}} \\ & \ldots & & & \\ 1 & x_{n_{1}} & x_{n_{2}} & x_{n_{1}}^{2} & x_{n_{2}}^{2} & x_{n_{1}} x_{n_{2}}\end{array}\right]$

■ New columns are computed and filled in from original
 inputs

## Exponential parameter blow-up

- Cubic derived features



## Higher degree polynomials

- How complex a polynomial should we try?



## Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE



## Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE
- As degree increases, features explode exponentially



## Overfitting

■ Need to be careful about adding higher degree terms


## Overfitting

- Need to be careful about adding higher degree terms
- For $n$ training points, can always fit polynomial of degree $(n-1)$ exactly

■ However, such a curve would not generalize well to new data points


## Overfitting

- Need to be careful about adding higher degree terms
- For $n$ training points, can always fit polynomial of degree $(n-1)$ exactly

■ However, such a curve would not generalize well to new data points

- Overfitting — model fits training data well, performs poorly on unseen data



## Regularization

- Need to trade off SSE against curve complexity



## Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE



## Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$



## Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$
- Minimize, for instance

$$
\frac{1}{2} \sum_{i=1}^{n} \underbrace{\left(z_{i}-y_{i}\right)^{2}}_{\text {SSE }}+\underbrace{\sum_{j=1}^{k} \theta_{j}^{2}}_{\text {Coefficents }}
$$



## Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$
- Minimize, for instance

$$
\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-y_{i}\right)^{2}+\sum_{j=1}^{k} \theta_{j}^{2}
$$

- Second term penalizes curve complexity

regulavization term


## Regularization

- Variations on regularization
- Change the contribution of coefficients



## Regularization

- Variations on regularization
- Change the contribution of coefficients to the loss function
- Ridge regression:

Coefficients contribute $\sum_{j=1}^{k} \theta_{j}^{2}$


## Regularization

- Variations on regularization
- Change the contribution of coefficients to the loss function
- Ridge regression:

Coefficients contribute $\sum_{j=1}^{k} \theta_{j}^{2}$

- LASSO regression:

Coefficients contribute $\sum_{j=1}^{k}\left|\theta_{j}\right|$


## Regularization

- Variations on regularization
- Change the contribution of coefficients to the loss function
- Ridge regression:

Coefficients contribute $\sum_{j=1}^{k} \theta_{j}^{2}$

- LASSO regression:

Coefficients contribute $\sum_{j=1}^{k}\left|\theta_{j}\right|$


■ Elastic net regression:
Coefficients contribute $\sum_{j=1}^{k} \lambda_{1}\left|\theta_{j}\right|+\lambda_{2} \theta_{j}^{2}$

## The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable



## The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable
- Take log of GDP
- Regression we are computing is
$y=\theta_{0}+\theta_{1} \log x_{1}$



## The non-polynomial case

- Reverse the relationship
- Plot per capita GDP in terms of percentage of urbanization
- Now we take log of the output variable $\log y=\theta_{0}+\theta_{1} x_{1}$
- Log-linear transformation

■ Earlier was linear-log

- Can also use log-log



## Regression for classification

- Regression line
- Set a threshold

■ Classifier

- Output below threshold : 0 (No)
- Output above threshold : 1 (Yes)


## Regression for classification

- Regression line
- Set a threshold
- Classifier
- Output below threshold : 0 (No)
- Output above threshold : 1 (Yes)
- Classifier output is a step function



## Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

$$
z \rightarrow \infty, e^{-2} \rightarrow 0
$$

$$
2 \rightarrow-\infty, e^{-2} \rightarrow \infty
$$

## Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Input $z$ is output of our regression

$$
\sigma(z)=\frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)}}
$$

## Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Input $z$ is output of our regression

$$
\sigma(z)=\frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)}}
$$

- Adjust parameters to fix horizontal position and steepness
 of step


## Logistic regression

■ Compute the coefficients?
■ Solve by gradient descent


## Logistic regression

■ Compute the coefficients?

- Solve by gradient descent

■ Need derivatives to exist

- Hence smooth sigmoid, not step function
■ Check that

$$
\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))
$$



## Logistic regression

■ Compute the coefficients?

- Solve by gradient descent
- Need derivatives to exist
- Hence smooth sigmoid, not step function
■ Check that

$$
\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))
$$

■ Need a cost function to minimize


MSE for logistic regression and gradient descent
■ Suppose we take mean squared error as the loss function.

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

Lpredhched class
actual class

## MSE for logistic regression and gradient descent

- Suppose we take mean squared error as the loss function.

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$


## MSE for logistic regression and gradient descent

- Suppose we take mean-squared error as the loss function.

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\sum_{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot & -\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}} \\
& -1 \cdot \frac{\boldsymbol{\sigma}}{\boldsymbol{\partial} \theta_{\boldsymbol{\gamma}}}
\end{aligned}
$$

## MSE for logistic regression and gradient descent

- Suppose we take mean squared error as the loss function.

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$
- For $j=1,2$,

$$
\iota^{\sigma^{\prime}(z)}
$$

$$
\frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}}
$$

## MSE for logistic regression and gradient descent

- Suppose we take mean squared error as the loss function.

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

■ For $j=1,2$,

$$
\begin{aligned}
& \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
&=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i j} \\
& \boldsymbol{q}_{\mathbf{l}}
\end{aligned}
$$

## MSE for logistic regression and gradient descent

- Suppose we take mean squared error as the loss function.

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

■ For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i j} \\
\square \frac{\partial C}{\partial \theta_{0}} & =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)
\end{aligned}
$$

MSE for logistic regression and gradient descent ...
$\square$ For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$

- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$


## MSE for logistic regression and gradient descent ...

■ For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$

- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$

■ Ideally, gradient descent should take large steps when $\sigma(z)-y$ is large

## MSE for logistic regression and gradient descent ...

- For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$
- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$
- Ideally, gradient descent should take large steps when $\sigma(z)-y$ is large
- $\sigma(z)$ is flat at both extremes
- If $\sigma(z)$ is completely wrong, $\sigma(z) \approx(1-y)$, we still have $\sigma^{\prime}(z) \approx 0$
- Learning is slow even when current model is far from optimal



## Loss function for logistic regression

■ Goal is to maximize log likelihood

## Loss function for logistic regression

- Goal is to maximize log likelihood
- Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$.


## Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$, $P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)$

## Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

- Combine as $\left.P\left(y_{i} \mid x_{i} ; \theta\right)=\overline{h_{\theta}\left(x_{i}\right.}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}-\boldsymbol{y}=\mathbf{1}$

$$
\eta_{1}=0
$$

## Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

- Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$
- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$


## Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}} \quad \ell(G)-\log (\pi-)^{(G)}$
$=\sum \log (\ldots)$
- Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)=$


## Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

## $\sigma(z)$



■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

■ Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$

- Minimize cross entropy: $-\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$


## Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$


## Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}$


## Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1 € \sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}=-\left[\frac{y}{\sigma(z)} \frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}}$


## Cross entropy and gradient descent

■ $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}}
\end{aligned}
$$

## Cross entropy and gradient descent

■ $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\text { ■ } \begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \sigma^{\prime}(z) x_{j}
\end{aligned}
$$

## Cross entropy and gradient descent

■ $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \sigma^{\prime}(z) x_{j} \\
& =-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}
\end{aligned}
$$

## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$


## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$


## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
=-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j}
$$

## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(/ 2)-\sigma(z)+\not / \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$


## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$
- Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$


## Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$
- Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$
- The greater the error, the faster the learning rate

