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1. History and Motivation 

In the early 1930s, a biologist named Sewall Wright figured out a way to statistically model the causal
structure of biological systems. He did so by combining directed graphs , which naturally represent causal
hypotheses, and linear statistical models, which are systems of linear regression equations and statistical
constraints, into a unified representation he called path analysis. 

Wright, and others after him, realized that the causal structure of his models (the directed graph)
determined statistical predictions we could test without doing experiments. For example, consider a model
in which blood sugar causes hunger, but only indirectly. 

blood sugar --> stomach acidity --> hunger

The model asserts that blood sugar causes stomach acidity directly, and that stomach acidity causes
hunger directly. It turns out that no matter what the strength (as long as its not zero) of these causal
connections, which are called "parameters," the model implies that blood sugar and hunger are correlated,
but that the partial correlation of blood sugar and hunger controlling for stomach acity does vanish. 

This means that if we could measure blood sugar, stomach acidity and hunger, then we could also test the
causal claims of this theory without doing a controlled experiment. We could invite people off the street to
come into our office, take measurements of their blood sugar, stomach acidity and hunger levels, and
examine the data to see if blood sugar and hunger are significantly correlated, and not significantly
correlated when we control for stomach acidity. If these predictions don't hold, then the causal claims of
our model are suspect. 

Although it is easy to derive the two statistical consequences of this path analytic causal model, in general
it is quite hard. In the 1950s and 60s, Herbert Simon (1954) and Hubert Blalock (1961) worked on the
problem, but only solved it for a number of particular causal structures (directed graphs). The problem
that Wright, Simon, and Blalock were trying to tackle can be put very generally: what are the testable
statistical consequences of causal structure. This question is central to the epistemology and methodology
of behavioral science, but put this way is still too vague to answer mathematically. 

By assuming that the causal structure of a model is captured entirely by the directed graph part of the
statistical model, we move a step closer towards framing the question in a clear mathematical form. By
clarifying what we mean by "testable statistical consequences" we take one more step in this direction.
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Although Wright, Blalock and Simon considered vanishing correlations and vanishing partial correlations,
we will be a little more general and consider independence and conditional independence , which include
vanishing correlation and partial correlation as special cases, as one class of "testable statistical
constraints." These are not the only statistical consequences of causal structure. For example, Spearman
(1904), Costner (1971), and Glymour, Scheines, Spirtes, and Kelly (1987) used the vanishing tetrad
difference to probe the causal structure of models with variables that cannot be directly meausured (called
latent variables) like general intelligence. But clearly conditional independence constraints are central,
and here we restrict ourselves to them. 

So here is a general question that is precise enough to answer mathematically: Can we specify an
algorithm that will compute, for any directed graph interpreted as a linear statistical model, all and only
those independence and conditional independence relations that hold for all values of the parameters
(causal strengths). 

Judea Pearl, Dan Geiger, and Thomas Verma, computer scientists at UCLA working on the problem of
storing and processing uncertain information efficiently in artificially intelligent agents, solved this
mathematical problem in the mid 1980s. Pearl and his colleagues realized that uncertain information
could be stored much more efficiently by taking advantage of conditional independence, and they used
directed acyclic graphs (graphs with no loops from a variable back to itself) to encode probabilities and
the conditional independence relations among them. D-separation was the algorithm they invented to
compute all the conditional independence relations entailed by their graphs (see Pearl, 1988). Peter
Spirtes, Clark Glymour, and Richard Scheines, working on the problem of causal inference at the
Philosopy Department at Carnegie Mellon University in the late 1980s and early 1990s, connected the
artificial intelligence work of Pearl and his colleagues to the problem of testing and discovering causal
structure in behavioral sciences (see Spirtes, Glymour, and Scheines, 1993). The work didn't stop there,
however. Pearl and his colleagues proved many more interesting results about graphical models, what
they entail, and algorithms to discover them (see Judea Pearl's home page). In 1994, Spirtes proved that d-
separation correctly computes the conditional independence relations entailed by cyclic directed graphs
interepred as linear statistical models (Spirtes, 1994), and in the same year Richardson (1994) developed
an efficient procedure to determine when two linear models, cyclic or not, are d-separation equivalent. In
1996, Pearl proved that d-separation correctly encodes the independencies entailed by directed graphs
with or without cycles in a special class of discrete causal models (Pearl, 1996). Also in 1996, Spirtes
Richardson, Meek, Scheines, and Glymour (1996) proved that d-separation works for linear statistical
models with correlated errors. So it should be obvious that d-separation is a central idea in the theory of
graphical causal models. In the rest of this module, we try to explain the ideas behind the definition and
then give the definition formally. At the end of the module you can run a few Java applets which provide
interactive tutorials for these ideas.
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2. D-separation Explained 

In this section we explain the ideas that underly the definition of d-separation. If you want to go to the
section in which we give a formal definition of d-separation, click here. 

Although there are many ways to understand d-separation, we prefer using the ideas of active path and
active vertex on a path (see the active path applet). 
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Recall the motivation for d-separation. The "d" in d-separation and d-connection stands for dependence.
Thus if two variables are d-separated relative to a set of variables Z in a directed graph, then they are
independent conditional on Z in all probability distributions such a graph can represent. Roughly, two
variables X and Y are independent conditional on Z if knowledge about X gives you no extra information
about Y once you have knowledge of Z. In other words, once you know Z, X adds nothing to what you
know about Y. 

Intuitively, a path is active if it carries information, or dependence. Two variables X and Y might be
connected by lots of paths in a graph, where all, some, or none of the paths are active. X and Y are d-
connected, however, if there is any active path between them. So X and Y are d-separated if all the paths
that connect them are inactive, or, equivalently, if no path between them is active. 

So now we need to focus on what makes a path active or inactive. A path is active when every vertex on
the path is active. Paths, and vertices on these paths, are active or inactive relative to a set of other vertices
Z. First lets examine when things are active or inactive relative to an empty Z. To make matters concrete,
consider all of the possible undirected paths between a pair of variables A and B that go through a third
variable C: 

1) A --> C --> B 
2) A <-- C <-- B 
3) A <-- C --> B 
4) A --> C <-- B 

The first is a directed path from A to B through C, the second a directed path from B to A through C, and
the third a pair of directed paths from C to A and from C to B. If we interpret these paths causally, in the
first case A is an indirect cause of B, in the second B is an indirect cause of A, and in the third C is a
common cause of A and B. All three of these causal situations give rise to association, or dependence,
between A and B, and all three of these undirected paths are active in the theory of d-separation. If we
interpret the fourth case causally, then A and B have a common effect in C, but no causal connection
between them. In the theory of d-separation, the fourth path is inactive. Thus, when the conditioning set is
empty, only paths that correspond to causal connection are active. 

We said before that a path is active in the theory of d-separation just in case all the vertices on the path are
active. Since C is the only vertex on all four paths between A and B above, it must be active in the first
three paths and inactive in the fourth. 

What is common to the way C occurs on the first three paths but different in how it occurs on the fourth?
In the first three, C is a non-collider on the path, and in the fourth C is a collider (See the module on
directed graphs for an explanation of colliders and non-colliders). When the conditioning set is empty,
non-colliders are active. Intuitively, non-colliders transmit information (dependence). When the
conditioning set is empty, colliders are inactive. Intuitively, colliders don't transmit information
(dependence). So when Z is empty, the question of whether X and Y are d-separated by Z in a graph G is
very simple: Are there any paths between X and Y that have no colliders? 

Now consider what happens when the conditioning set is not empty. When a vertex is in the conditioning
set, its status with respect to being active or inactive flip-flops. Consider the four paths above again, but
now lets consider the question of whether the variables A and B are d-separated by C (in boldface). 

1) A --> C --> B 
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2) A <-- C <-- B 
3) A <-- C --> B 
4) A --> C <-- B 

In the first three paths, C was active when the conditioning set was empty, so now C is inactive on these
paths. To fix intuitions, again interpret the paths causally. In the first case the path from A to B is blocked
by conditioning on the intermediary C, similarly in case 2, and in case 3 you are conditioning on a
common cause, which makes the effects independent. Philosophers like Reichenbach, Suppes, and
Salmon, as well as mathematicians like Markov, worked out this part of the story. Reichenbach called it
the "Principle of the Common Cause," and Markov expressed it as the claim that the present makes the
past and future independent, but all were aware that conditioning on a causal intermediary or common
cause, which are non-colliders in directed graphs interpreted causally, cuts off dependence that would
otherwise have existed. 

In the fourth case, C is a collider and thus inactive when the conditioning set is empty, so is now active.
This can also be made intuitive by considering what happens when you look at the relationship between
two independent causes after you condition on a common effect. Consider an example given by Pearl
(1988) in which there are two independent causes of your car refusing to start: having no gas and having a
dead battery. 

dead battery --> car won't start <-- no gas

Telling you that the battery is charged tells you nothing about whether there is gas, but telling you that the
battery is charged after I have told you that the car won't start tells me that the gas tank must be empty. So
independent causes are made dependent by conditioning on a common effect, which in the directed graph
representing the causal structure is the same as conditioning on a collider. David Papineau (1985) was the
first to understand this case, but never looked at the general connection between directed graphs
interpreted causally and conditional independence. 

The final piece of the story involves the descendants of a collider. Whereas conditioning on a collider
activates it, so does conditioning on any of its descendants. No one understood this case before Pearl and
his colleagues. 

We built a Java applet to help you understand active paths and active vertices on the path. You can draw a
graph, pick vertices and a conditioning set, and then pick a path between the vertices you have selected.
You then must decide which vertices are active or inactive on the path. The applet will give you feedback,
and, if you like, explanations. Run the applet on active paths and active vertices.
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2. D-separation formally defined 

In this section we define d-separation formally. If you want to go to the section that explains the ideas that
underly the definition of d-separation, then click here. 

The following terms occur in the definition of d-separation: 
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undirected path,
collider
non-collider
descendant

Each of them is defined and explained in the module on directed graphs. It is easier to define d-
connection, and then define d-separation as the negation of d-connection. 

D-connection: 
If G is a directed graph in which X, Y and Z are disjoint sets of vertices, then X and Y are d-connected by
Z in G if and only if there exists an undirected path U between some vertex in X and some vertex in Y
such that for every collider C on U, either C or a descendent of C is in Z, and no non-collider on U is in Z.

X and Y are d-separated by Z in G if and only if they are not d-connected by Z in G. 

Since you can't really learn a definition unless you try to apply it, we built a Java aapplet that lets you
experiment with this definition. The applet lets you draw any graph you like, pick vertices and a
conditioning set, state your opinion about whether the vertices you have picked are d-separated or d-
connected by the conditioning set you have chosen, and finally tells you whether you are right or wrong.
Run the applet on the definition of d-separation
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