Lecture 23: 28 April, 2022

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present
- For (d), need Z absent
- In general, V-structure includes

(d) descendants of the bottom node

■ x and y are D-separated given z if all trails are blocked

- Variation of breadth first search (BFS) to check if y is reachable from x through some trail

■ Extends to sets - each $x \in X$ is D-separated from each $y \in Y$

Markov blanket

- $M B(X)$ Markov blanket of X

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents(X)

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents (X)
- Children (X)

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents (X)
- Children(X)
- Parents of Children (X)

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents (X)
- Children(X)
- Parents of Children (X)
- $X \perp \neg M B(X) \mid M B(X)$

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- $\frac{P(b, m, j)}{P(m, j)}$

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- $\frac{P(b, m, j)}{P(m, j)}$

■ Use chain rule to evaluate joint probabilities

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- $\frac{P(b, m, j)}{P(m, j)}$

■ Use chain rule to evaluate joint probabilities

■ Reorder variables appropriately, topological order of graph

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations
- However, exact inference is NP-complete, in general

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations
- However, exact inference is NP-complete, in general
- Instead, approximate inference through sampling

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities
- Fix $M B(x)$ before generating x

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities
- Fix $M B(x)$ before generating x
- Generate in topological order
- Generate b, e with probabilities $P(b)$ and $P(e)$
- Generate a with probability
 $P(a \mid b, e)$

■ Generate j, m with probabilities $P(j \mid a), P(m \mid a)$

Approximate inference

- We are interested in $P(b \mid j, m)$

Approximate inference

- We are interested in $P(b \mid j, m)$

■ Samples with $\neg j$ or $\neg m$ are useless

Approximate inference

- We are interested in $P(b \mid j, m)$

■ Samples with $\neg j$ or $\neg m$ are useless

- Can we sample more efficiently?

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Topological order

- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$
- Topological order
- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

■ If we start with \neg Cloudy, sample is useless

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$
- Topological order
- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

■ If we start with \neg Cloudy, sample is useless

- Immediately stop and reject this sample - rejection sampling

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$
- Topological order
- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

■ If we start with \neg Cloudy, sample is useless

- Immediately stop and reject this sample - rejection sampling
- General problem with low probability situation - lots of samples

S	R	$P(W)$
t	t	.99
t	f	.90
f	t	.90
f	f	.00

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables

■ Suppose we generate $c, \neg s, r, w$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9=0.45$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence:

$$
0.5 \times 0.9=0.45
$$

- 0.45 is likelihood weight of sample

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence:

$$
0.5 \times 0.9=0.45
$$

- 0.45 is likelihood weight of sample

■ Samples $s_{1}, s_{2}, \ldots, s_{N}$ with weights $w_{1}, w_{2}, \ldots w_{N}$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence:

$$
0.5 \times 0.9=0.45
$$

- 0.45 is likelihood weight of sample

■ Samples $s_{1}, s_{2}, \ldots, s_{N}$ with weights $W_{1}, W_{2}, \ldots W_{N}$

- $P(r \mid c, w)=\frac{\sum_{s_{i} \text { has rain }} w_{i}}{\sum_{1 \leq j \leq N} w_{j}}$

Markov chains

