Lecture 20: 11 April, 2022

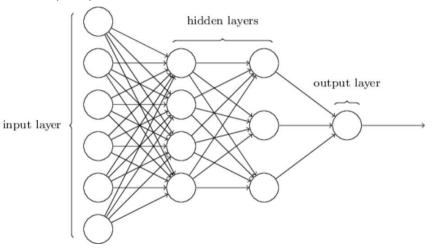
Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–May 2022

Neural networks

Acyclic network of perceptrons with non-linear activation functions

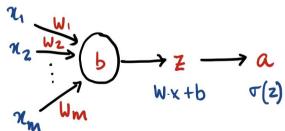


Neural networks

- Without loss of generality,
 - Assume the network is layered
 - All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - Set weight to 0 if connection is not needed

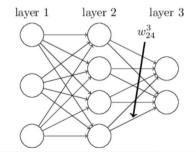
Neural networks

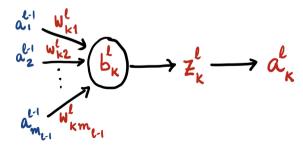
- Without loss of generality,
 - Assume the network is layered
 - All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - Set weight to 0 if connection is not needed
- Structure of an individual neuron
 - Input weights w_1, \ldots, w_m , bias b, output z, activation value a



- Layers $\ell \in \{1, 2, ..., L\}$
 - Inputs are connected first hidden layer, layer 1
 - Layer *L* is the output layer
- Layer ℓ has m_{ℓ} nodes $1, 2, \ldots, m_{\ell}$

- Layers $\ell \in \{1, 2, ..., L\}$
 - Inputs are connected first hidden layer, layer 1
 - Layer L is the output layer
- Layer ℓ has m_{ℓ} nodes $1, 2, \ldots, m_{\ell}$
- Node k in layer ℓ has bias b_k^{ℓ} , output z_k^{ℓ} and activation value a_k^{ℓ}
- Weight on edge from node j in level $\ell-1$ to node k in level ℓ is w_{kj}^{ℓ}





■ Why the inversion of indices in the subscript w_{kj}^{ℓ} ?

Let
$$\overline{w}_k^{\ell} = (w_{k1}^{\ell}, w_{k2}^{\ell}, \dots, w_{km_{\ell-1}}^{\ell})$$

and $\overline{a}^{\ell-1} = (a_1^{\ell-1}, a_2^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$

■ Then
$$z_k^\ell = \overline{w}_k^\ell \cdot \overline{a}^{\ell-1}$$

• Why the inversion of indices in the subscript w_{kj}^{ℓ} ?

Let
$$\overline{w}_k^{\ell} = (w_{k1}^{\ell}, w_{k2}^{\ell}, \dots, w_{km_{\ell-1}}^{\ell})$$

and $\overline{a}^{\ell-1} = (a_1^{\ell-1}, a_2^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$

- Then $z_k^{\ell} = \overline{w}_k^{\ell} \cdot \overline{a}^{\ell-1}$
- Assume all layers have same number of nodes
 - $\blacksquare \text{ Let } m = \max_{\ell \in \{1.2, \dots, L\}} m_{\ell}$
 - For any layer i, for $k > m_i$, we set all of w_{kj}^{ℓ} , b_k^{ℓ} , z_k^{ℓ} , a_k^{ℓ} to 0
- Matrix formulation

$$\left[egin{array}{c} \overline{z}_1^\ell \ \overline{z}_2^\ell \ \dots \ \overline{z}_m^\ell \end{array}
ight] \ = \ \left[egin{array}{c} \overline{w}_1^\ell \ \overline{w}_2^\ell \ \dots \ \overline{w}_m^\ell \end{array}
ight] \left[egin{array}{c} a_1^{\ell-1} \ a_2^{\ell-1} \ \dots \ a_m^{\ell-1} \end{array}
ight]$$

- lacksquare Need to find optimum values for all weights w_{kj}^ℓ
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation. a^{L}
 - For instance, for training input (x_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - Note that x_i , y_i are fixed values, only a_i^L is a variable

6 / 15

Lecture 20: 11 April. 2022

- Need to find optimum values for all weights w_{kj}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation, a^{L}
 - For instance, for training input (x_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - Note that x_i , y_i are fixed values, only a_i^L is a variable
 - Total cost is average of individual input costs
 - Each input x_i incurs cost $C(x_i)$, total cost is $\frac{1}{n} \sum_{i=1}^{n} C(x_i)$
 - For instance, mean sum-squared error $\frac{1}{n}\sum_{i=1}^{n}(y_i a_i^L)^2$

- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation, a^{L}
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$ in terms of individual $\frac{\partial a_i^L}{\partial w_{kj}^{\ell}}$, $\frac{\partial a_i^L}{\partial b_k^{\ell}}$
 - Can extrapolate change in individual cost C(x) to change in overall cost C stochastic gradient descent

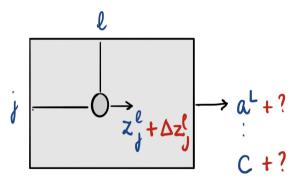
7 / 15

- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation, a^L
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$ in terms of individual $\frac{\partial a_i^L}{\partial w_{kj}^{\ell}}$, $\frac{\partial a_i^L}{\partial b_k^{\ell}}$
 - Can extrapolate change in individual cost C(x) to change in overall cost C stochastic gradient descent
- Complex dependency of C on w_{kj}^{ℓ} , b_k^{ℓ}
 - Many intermediate layers
 - Many paths through these layers
- Use chain rule to decompose into local dependencies

•
$$y = g(f(x)) \Rightarrow \frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x}$$

Calculating dependencies

If we perturb the output z_j^{ℓ} at node j in layer ℓ , what is the impact on final output, overall cost?



Focus on $\frac{\partial C}{\partial z_j^\ell}$ — from these, we can compute $\frac{\partial C}{\partial w_{jk}^\ell}$, $\frac{\partial C}{\partial b_j^\ell}$

Computing partial derivatives

- Use chain rule to run backpropagation algorithm
 - Given an input, execute the network from left to right to compute all outputs
 - Using the chain rule, work backwards from right to left to compute all values of $\frac{\partial C}{\partial z_i^{\ell}}$

Compute z,a

Compute
$$\frac{\partial c}{\partial z_{k}^{e}}$$
, $\frac{\partial c}{\partial w_{kj}^{e}}$, $\frac{\partial c}{\partial b_{k}^{e}}$

Let
$$\delta_j^\ell$$
 denote $\frac{\partial C}{\partial z_j^\ell}$

Let
$$\delta_j^\ell$$
 denote $\frac{\partial C}{\partial z_j^\ell}$

Base Case

$$\ell = L$$
, δ_j^L

■ Chain rule:
$$\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$$

Let
$$\delta_j^\ell$$
 denote $\frac{\partial C}{\partial z_j^\ell}$

Base Case

$$\ell = L$$
, δ_j^L

- Chain rule: $\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$
- For instance, if $C = \frac{1}{n} \sum_{i=1}^{n} (y_i a_i^L)^2$, then $\frac{\partial C}{\partial a_j^L} = 2(y_j a_j^L)(-1) = 2(a_j^L y_j)$

Let
$$\delta_j^\ell$$
 denote $\frac{\partial C}{\partial z_j^\ell}$

Base Case

$$\ell = L$$
, δ_j^L

- Chain rule: $\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$
- For instance, if $C = \frac{1}{n} \sum_{i=1}^{n} (y_i a_i^L)^2$, then $\frac{\partial C}{\partial a_j^L} = 2(y_j a_j^L)(-1) = 2(a_j^L y_j)$
- $a_j^L = \sigma(z_j^L)$, so $\frac{\partial a_j^L}{\partial z_i^L} = \sigma'(z_j^L)$

Let
$$\delta_j^\ell$$
 denote $\frac{\partial C}{\partial z_j^\ell}$

Base Case

$$\ell = L$$
, δ_j^L

- Chain rule: $\frac{\partial C}{\partial z_i^L} = \frac{\partial C}{\partial a_i^L} \frac{\partial a_j^L}{\partial z_i^L}$
- For instance, if $C = \frac{1}{n} \sum_{i=1}^{n} (y_i a_i^L)^2$, then $\frac{\partial C}{\partial a_j^L} = 2(y_j a_j^L)(-1) = 2(a_j^L y_j)$
- \bullet $a_j^L = \sigma(z_j^L)$, so $\frac{\partial a_j^L}{\partial z_i^L} = \sigma'(z_j^L)$
 - $\sigma(u) = \frac{1}{1 + e^{-u}}, \ \sigma'(u) = \frac{\partial \sigma(u)}{\partial u} = \sigma(u)(1 \sigma(u)) \text{ Work this out!}$

Induction step

From $\delta_j^{\ell+1}$ to δ_j^{ℓ}

Induction step

From $\delta_j^{\ell+1}$ to δ_j^{ℓ}

$$\bullet \delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

11 / 15

Induction step

From $\delta_j^{\ell+1}$ to δ_j^ℓ

$$\bullet \delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

■ First term inside summation: $\frac{\partial C}{\partial z_{k}^{\ell+1}} = \delta_{k}^{\ell+1}$

11 / 15

Induction step

From $\delta_j^{\ell+1}$ to δ_j^ℓ

$$\bullet \delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

- First term inside summation: $\frac{\partial C}{\partial z_k^{\ell+1}} = \delta_k^{\ell+1}$
- Second term: $z_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} a_i^{\ell} + b_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}$

11 / 15

Induction step

From $\delta_i^{\ell+1}$ to δ_i^{ℓ}

$$\bullet \delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

- First term inside summation: $\frac{\partial C}{\partial z^{\ell+1}} = \delta_k^{\ell+1}$
- Second term: $z_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} a_i^{\ell} + b_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}$ For $i \neq j$, $\frac{\partial}{\partial z_j^{\ell}} [w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}] = 0$

Induction step

From $\delta_i^{\ell+1}$ to δ_i^{ℓ}

$$\bullet \delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

- First term inside summation: $\frac{\partial C}{\partial z^{\ell+1}} = \delta_k^{\ell+1}$
- Second term: $z_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} a_i^{\ell} + b_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}$

 - For $i \neq j$, $\frac{\partial}{\partial z_j^{\ell}} [w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}] = 0$ For i = j, $\frac{\partial}{\partial z_i^{\ell}} [w_{kj}^{\ell+1} \sigma(z_j^{\ell}) + b_k^{\ell+1}] = w_{kj}^{\ell+1} \sigma'(z_j^{\ell})$

11 / 15

Madhavan Mukund Lecture 20: 11 April. 2022

Induction step

From $\delta_i^{\ell+1}$ to δ_i^{ℓ}

$$\bullet \delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

- First term inside summation: $\frac{\partial C}{\partial z^{\ell+1}} = \delta_k^{\ell+1}$
- Second term: $z_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} a_i^{\ell} + b_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}$

 - For $i \neq j$, $\frac{\partial}{\partial z_{j}^{\ell}} [w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}] = 0$ For i = j, $\frac{\partial}{\partial z_{j}^{\ell}} [w_{kj}^{\ell+1} \sigma(z_{j}^{\ell}) + b_{k}^{\ell+1}] = w_{kj}^{\ell+1} \sigma'(z_{j}^{\ell})$

11 / 15

What we actually need to compute are $\frac{\partial C}{\partial w_{kj}^\ell}$, $\frac{\partial C}{\partial b_k^\ell}$

$$\frac{\partial C}{\partial w_{kj}^{\ell}}, \frac{\partial C}{\partial b_k^{\ell}}$$

12 / 15

What we actually need to compute are

$$\frac{\partial C}{\partial w_{kj}^{\ell}}, \frac{\partial C}{\partial b_k^{\ell}}$$

12 / 15

What we actually need to compute are

$$\frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial w_{kj}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial w_{kj}^{\ell}}$$

$$\frac{\partial C}{\partial b_{k}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}$$

We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w_{\ell}^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b_{\ell}^{\ell}}$

12 / 15

Madhavan Mukund Lecture 20: 11 April. 2022

What we actually need to compute are $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$

$$\frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial w_{kj}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial w_{kj}^{\ell}}$$

$$\frac{\partial C}{\partial b_{k}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}$$

We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b^{\ell}}$

- Since $z_k^\ell = \sum_{i=1}^m w_{ki}^\ell a_i^{\ell-1} + b_k^\ell$, it follows that

Madhavan Mukund Lecture 20: 11 April. 2022

What we actually need to compute are $\frac{\partial C}{\partial w_{L^{\perp}}^{\ell}}$, $\frac{\partial C}{\partial b_{L}^{\ell}}$

$$\frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial w_{kj}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial w_{kj}^{\ell}}$$

$$\frac{\partial C}{\partial b_{k}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}$$

$$\bullet \frac{\partial C}{\partial b_k^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}}$$

We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b^{\ell}}$

- Since $z_k^\ell = \sum_{i=1}^m w_{ki}^\ell a_i^{\ell-1} + b_k^\ell$, it follows that

Backpropagation

- In the forward pass, compute all z_k^{ℓ} , a_k^{ℓ}
- In the backward pass, compute all δ_k^{ℓ} , from which we can get all $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- lacksquare Increment each parameter by a step Δ in the direction opposite the gradient

Backpropagation

- In the forward pass, compute all z_{k}^{ℓ} , a_{k}^{ℓ}
- In the backward pass, compute all δ_k^{ℓ} , from which we can get all $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Increment each parameter by a step Δ in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

- Update parameters after each mini batch stochastic gradient descent
- Epoch one pass through the entire training data

Challenges

■ Backpropagation dates from mid-1980's

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, **323**, 533–536 (1986)

- Computationally infeasible till advent of modern parallel hardware, GPUs for vector (tensor) calculations
- Vanishing gradient problem cascading derivatives make gradients in initial layers very small, convergence is slow
 - In rare cases, exploding gradient also occurs

Pragmatics

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .

15 / 15

Pragmatics

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .
- Libraries implementing neural networks have several hyperparameters that can be tuned
 - Network structure: Number of layers, type of activation function RELU, tanh
 - Training: Mini-batch size, number of epochs
 - Heuristics: Choice of optimizer for gradient descent

15 / 15

Pragmatics

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .
- Libraries implementing neural networks have several hyperparameters that can be tuned
 - Network structure: Number of layers, type of activation function RELU, tanh
 - Training: Mini-batch size, number of epochs
 - Heuristics: Choice of optimizer for gradient descent
- Loss functions
 - As we have seen MSE is not a good choice
 - Cross entropy is better corresponds to finding MLE