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Soft margin optimization
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¢ Constraints include requirement that error
terms are non-negative

e Again the objective function is quadratic
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The non-linear case
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¢ How do we deal with datasets where
the separator is a complex shape?
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e Geometrically transform the data

- Typically,add dimensions 2
e Forinstance, if we can "lift" one class, .‘ o ° .
we can find a planar separator between e O @ o 7
® ® o ® @
levels @ ®

° input space mapped space
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Geometric tranformation
|

¢ Consider two sets of points separated Y
by a circle of radius 1

e Equationofcircleis z°4+3° =1

1)

e Points inside the circle =° + y2 <1

e Points outsidecircle 2% +3* > 1 .
e Transformation N o |®
®

¢ (zy) = (2, y,2° + y7)

e Points inside circle lie belowz =1 8 8
olo

¢ Point outside circle lifted abovez =1
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SVM after transformation

* SVM in original space

sign [Z yii{x; - z) + b
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e After transformation

sign [Z yic(p(w:) - p(2)) + b
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¢ All we need to know is how to compute

dot products in transformed space
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Dot products

e Considerthe transformation

@ (1, 22) > (1, V211, V2m9, 22, V21 19, 72)

¢ Dot product in transformed space

(p(x) - p(2)) = 14 2m121 + 22929 + 2222

2.2
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= (142121 + 7229)?

¢ Transformed dot product can be
expressed in terms of originalinputs

(@) 9(2)) = K(2,2) = (1 + 2121 + 2225)°
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Kernels

* Kis a kernel fortransformation ¢ if y

K(z,z) = (p(z) - ¢(2))

¢ |f we have a kernel, we don't need to
explicitly compute transformed points

¢ All dot products can be computed ©
implicitly using the kernel on original @

data points
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sign [Z yivi{o(w;) - o(2)) +b
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Kernels

* Kis a kernel fortransformation ¢ if y

K(z,z) = (p(z) - ¢(2))

¢ |f we have a kernel, we don't need to
explicitly compute transformed points

1)

¢ All dot products can be computed ©
implicitly using the kernel on original Y @
data points ol®
sign Z v K )+ 0 als
iEsv’ Q|0
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Kernels
|

e If we know K is a kernel for some
transformation ¢ , we can blindly
use K without even knowing
what ¢ looks like!

e When is a function a valid kernel?

¢ Has been studied in mathematics —
Mercer's Theorem

. Criteria are non-constructive

e Can define sufficient conditionsfrom
linearalgebra
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Kernels
|

 Kernel over trainingdataxy, X2, ..., TN Y
can be represented as a gram matrix

r1 Lo -+ IN
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K= T2
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e Entries are values K(z;, z;)

e Gram matrix should be positive semi-
definite forall 1, Z2,.... TN
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Known kernels

¢ Fortunately, there are many known
kernels

¢ Polynomial kernels
K(z,2) = (1+ (- 2)*
¢ Any K(x,z) representing a similarity
measure

¢ Gaussian radial basis function —
similarity based on inverse exponential
distance

K(CL‘,Z) _ efc|x77;|2

cmni &



