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Mixture models

Probabilistic process — parameters Θ

Tossing a coin with Θ = {Pr(H)} = {p}

Perform an experiment

Toss the coin N times, H T H H · · · T

Estimate parameters from observations

From h heads, estimate p = h/N

Maximum Likelihood Estimator (MLE)

What if we have a mixture of two random processes

Two coins, c1 and c2, with Pr(H) = p1 and p2, respectively

Repeat N times: choose ci with probability 1/2 and toss it

Outcome: N1 tosses of c1 interleaved with N2 tosses of c2, N1 + N2 = N

Can we estimate p1 and p2?
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Mixture models . . .

Two coins, c1 and c2, with Pr(H) = p1 and p2, respectively

Sequence of N interleaved coin tosses H T H H · · · H H T

If the sequence is labelled, we can estimate p1, p2 separately

H T T H H T H T H H T H T H T H H T H T

p1 = 8/12 = 2/3, p2 = 3/8

What the observation is unlabelled?

H T T H H T H T H H T H T H T H H T H T

Iterative algorithm to estimate the parameters

Make an initial guess for the parameters

Compute a (fractional) labelling of the outcomes

Re-estimate the parameters
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Expectation Maximization (EM)

Iterative algorithm to estimate the parameters

Make an initial guess for the parameters

Compute a (fractional) labelling of the outcomes

Re-estimate the parameters

H T T H H T H T H H T H T H T H H T H T

Initial guess: p1 = 1/2, p2 = 1/4

Pr(c1 = T ) = q1 = 1/2, Pr(c2 = T ) = q2 = 3/4,

For each H, likelihood it was ci , Pr(ci | H), is pi/(p1 + p2)

For each T , likelihood it was ci , Pr(ci | T ), is qi/(q1 + q2)

Assign fractional count Pr(ci | H) to each H: 2/3× c1, 1/3× c2

Likewise, assign fractional count Pr(ci | T ) to each T : 2/5× c1, 3/5× c2
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Expectation Maximization (EM)

H T T H H T H T H H T H T H T H H T H T

Initial guess: p1 = 1/2, p2 = 1/4

Fractional counts: each H is 2/3× c1, 1/3× c2, each T : 2/5× c1, 3/5× c2

Add up the fractional counts

c1: 11 · (2/3) = 22/3 heads, 9 · (2/5) = 18/5 tails

c2: 11 · (1/3) = 11/3 heads, 9 · (3/5) = 27/5 tails

Re-estimate the parameters

p1 =
22/3

22/3 + 18/5
= 110/164 = 0.67, q1 = 1− p1 = 0.33

p2 =
11/3

11/3 + 27/5
= 55/136 = 0.40, q2 = 1− p2 = 0.60

Repeat until convergence
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Expectation Maximization (EM)

Mixture of probabilistic models (M1,M2, . . . ,Mk) with parameters
Θ = (θ1, θ2, . . . , θk)

Observation O = o1o2 . . . oN

Expectation step

Compute likelihoods Pr(Mi |oj) for each Mi , oj

Maximization step

Recompute MLE for each Mi using fraction of O assigned using likelihood

Repeat until convergence

Why should it converge?

If the value converges, what have we computed?
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EM — another example

Two biased coins, choose a coin
and toss 10 times, repeat 5 times

If we know the breakup, we can separately
compute MLE for each coin
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EM — another example

Expectation-
Maximization

Initial estimates,
θA = 0.6, θB = 0.5

Compute likelihood
of each sequence:
θnH (1− θ)nT

Assign each sequence
proportionately

Converge to
θA = 0.8, θB = 0.52
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EM — mixture of Gaussians

Sample uniformly from multiple Gaussians,
N (µi , σi )

For simplicity, assume all σi = σ

N sample points z1, z2, . . . , zN

Make an initial guess for each µj

Pr(zi | µj) = exp(− 1
2σ2 (zi − µj)2)

Pr(µj | zi ) = cij =
Pr(zi | µj)∑
k Pr(zi | µk)

MLE of µj is sample mean,

∑
i cijzi∑
i cij

Update estimates for µj and repeat
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Theoretical foundations of EM

Mixture of probabilistic
models (M1,M2, . . . ,Mk)
with parameters
Θ = (θ1, θ2, . . . , θk)

Observation
O = o1o2 . . . oN

EM builds a sequence of
estimates Θ1,Θ2, . . . ,Θn

L(Θj) — log-likelihood
function, lnPr(O | Θj)

Want to extend the
sequence with Θn+1 such
that L(Θn+1) > L(Θn)

EM performs a form of gradient descenct

If we update Θn to Θ′ we get an new likelihood
L(Θn) + ∆(Θ′,Θn) which we call `(Θ′ | Θn)

Choose Θn+1 to maximize `(Θ′ | Θn)
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Semi-supervised learning

Supervised learning requires labelled training data

What if we don’t have enough labelled data?

For a probabilistic classifier we can apply EM

Use available training data to assign initial probabilities

Label the rest of the data using this model — fractional labels

Add up counts and re-estimate the parameters
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Semi-supervised topic classification

Each document is a multiset or bag of words over a vocabulary
V = {w1,w2, . . . ,wm}

Each topic c has probability Pr(c)

Each word wi ∈ V has conditional probability Pr(wi | cj), for cj ∈ C

Note that
m∑
i=1

Pr(wi | cj) = 1

Assume document length is independent of the class

Only a small subset of documents is labelled

Use this subset for initial estimate of Pr(c), Pr(wi | cj)
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Semi-supervised topic classification

Current model Pr(c), Pr(wi | cj)

Compute Pr(cj | d) for each unlabelled document d

Normally we assign the maximum among these as the class for d

Here we keep fractional values

Recompute Pr(cj) =

∑
d∈D Pr(cj | D)

|D|
For labelled d , Pr(cj | d) ∈ {0, 1}
For unlabelled d , Pr(cj | d) is fractional value computed from current parameters

Recompute Pr(wi | cj) — fraction of occurrences of wi in documents labelled cj

nid — occurrences of wi in d

Pr(wi | cj) =

∑
d∈D nid Pr(cj | d)∑m

t=1

∑
d∈D ntd Pr(cj | d)

Madhavan Mukund Lecture 16: 24 March, 2022 DMML Jan–May 2022 13 / 14



Clustering

Data points from a mixture of
Gaussian distributions

Use EM to estimate the
parameters of each Gaussian
distribution

Assign each point to “best”
Gaussian

Can tweak the shape of the
clusters by constraining the
covariance matrix

Outliers are those that are
outside kσ for all the Gaussians
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