Lecture 12: 3 March, 2022

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–May 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Gradient Boosting

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent
 - + boosting

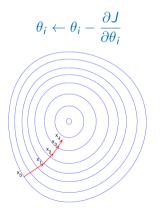
Gradient Boosting for Regression

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$ • ...
- Add an additional model h, so that new prediction is F(x) + h(x)

Gradient Boosting for Regression

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$
- Fit a new model *h* (typically a regression tree) to the residuals y_i − F(x_i)
- If F + h is not satisfactory, build another model h' to fit residuals y_i - [F(x_i) + h(x_i)]
- Why should this work?


Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Gradient descent

 Move parameters against the gradient with respect to loss function

- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$

•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta\\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta\\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

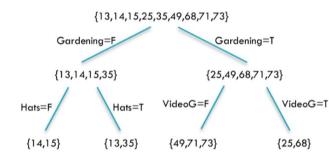
$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree *h* to negative gradients -g(x_i)
- Update F to $F + \rho h$
- ρ is the learning rate

Regression Trees

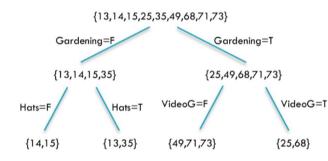
Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
З	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE


-

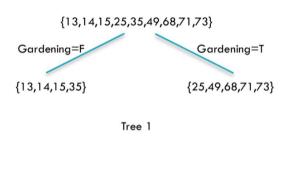
Lecture 12: 3 March, 2022

Regression Trees

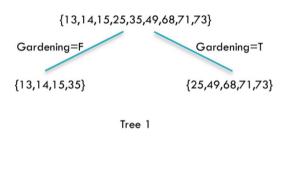

- Predict age based on given attributes
- Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
З	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

LikesHats seems irrelevant, yet pops up


Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

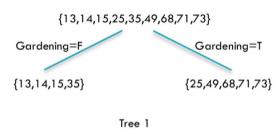
LikesHats seems irrelevant, yet pops up


Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

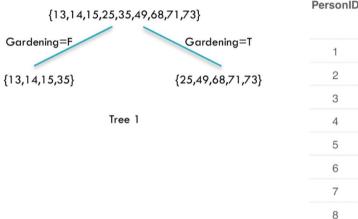
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶



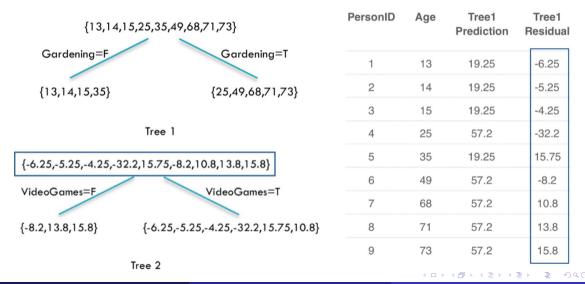
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

< □ > < 円


э

> < ∃

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8


ヘロト ヘロト ヘヨト ヘヨト

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

э

Image: A image: A

Madhavan Mukund

Lecture 12: 3 March, 2022

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	,15,35} {25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
{13,14,13,33}	{23,47,00,71,73}	З	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
[0 0 1 2 0 1 5 0]		8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

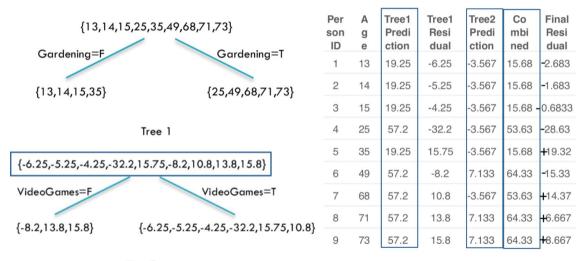
Madhavan Mukund

Lecture 12: 3 March, 2022

3

イロト 不得 トイヨト イヨト

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
		З	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(0 0 1 2 0 1 5 0)		8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667


Tree 2

Madhavan Mukund

*ロト * 同ト * 国ト * 国ト

э.

990

Tree 2

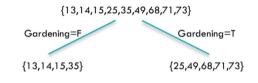
Madhavan Mukund

э

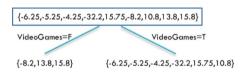
イロト イポト イヨト イヨト

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	-2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	-1.683
((,,,,,	3	15	19.25	-4.25	-3.567	15.68 -	0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	-28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32.	2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(00000000		8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2


3

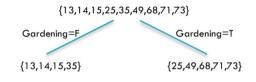
イロト 不得 トイヨト イヨト


990

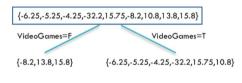
Gradient Boosting

General Strategy

Tree 1


イロト イポト イヨト イヨト

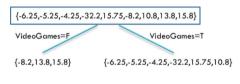
Tree 2


Gradient Boosting

General Strategy

Build tree 1, F_1

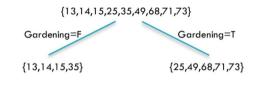
イロト イポト イヨト イヨト


Tree 2

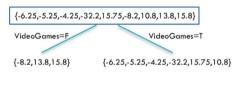
General Strategy

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$

Tree 1


Tree 2

э

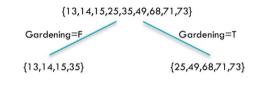

▶ ∢ ⊒

General Strategy

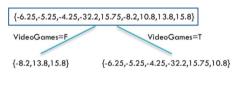
- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$

Tree 1

Tree 2


э

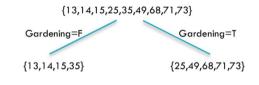
▶ ∢ ⊒


Gradient Boosting

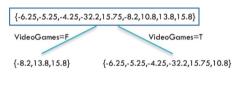
General Strategy

- Build tree 1. F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$

Tree 1

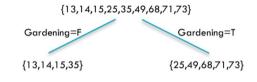


Tree 2

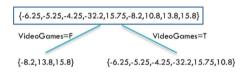

General Strategy

. . . .

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$



Tree 1

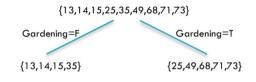


Tree 2

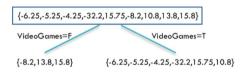
Learning Rate

Tree 1

イロト イポト イヨト イヨト


Tree 2

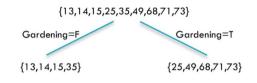
3


Hyper Parameters

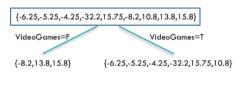
Learning Rate

• h_j fits residuals of F_j

Tree 1


イロト 不得下 イヨト イヨト

Tree 2

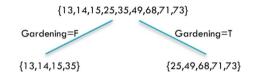

Hyper Parameters

Learning Rate

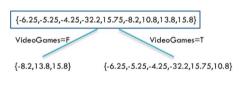
- h_j fits residuals of F_j
- $F_{j+1}(x) = F_J(x) + LR \cdot h_j(x)$
 - LR controls contribution of residual
 - LR = 1 in our previous example

Tree 1

Tree 2


э

▶ ∢ ⊒


Hyper Parameters

Learning Rate

- h_j fits residuals of F_j
- $F_{j+1}(x) = F_J(x) + LR \cdot h_j(x)$
 - LR controls contribution of residual
 - LR = 1 in our previous example
- Ideally, choose *LR* separately for each residual to minimize loss function
 - Can apply different LR to different leaves

Tree 1

Tree 2

Assume binary classification

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$

• For each x, classifier produces scores $\langle s_0, s_1 \rangle$

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = rac{e^{s_j}}{e^{s_0} + e^{s_1}}$

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = rac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

 $L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = rac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

 $L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$

Compute negative gradients

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = rac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

 $L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$

- Compute negative gradients
- Fit regression trees to negative gradients to minimize cross entropy