#### Lecture 11: 28 February, 2022

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–May 2022

#### Limitations of classification models

#### Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

#### Limitations of classification models

#### Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

#### Overcoming limitations

- Bagging is an effective way to overcome high variance
  - Ensemble models
    - Sequence of models based on independent bootstrap samples
    - Use voting to get an overall classifier
- How can we cope with high bias?

## Dealing with bias

- A biased model always makes mistakes
  - Build an ensemble of models to average out mistakes

# Dealing with bias

- A biased model always makes mistakes
  - Build an ensemble of models to average out mistakes
- Mistakes should be compensated across models in the ensemble
  - How to build a sequence of models, each biased a different way?
  - Again, we assume we have only one set of training data

- Build a sequence of weak classifiers  $M_1$ ,  $M_2$ , ...,  $M_n$  on inputs  $D_1$ ,  $D_2$ , ...,  $D_n$ 
  - $\blacksquare$  A weak classifier is any classifier that has error rate strictly below 50%



- Build a sequence of weak classifiers  $M_1$ ,  $M_2$ , ...,  $M_n$  on inputs  $D_1$ ,  $D_2$ , ...,  $D_n$ 
  - A weak classifier is any classifier that has error rate strictly below 50%
- Each  $D_i$  is a weighted variant of original training data D
  - Initially all weights equal,  $D_1$
  - Going from  $D_i$  to  $D_{i+1}$ : increase weights where  $M_i$  makes mistakes on  $D_i$
  - $M_{i+1}$  will compensate for errors of  $M_i$

- Build a sequence of weak classifiers  $M_1$ ,  $M_2$ , ...,  $M_n$  on inputs  $D_1$ ,  $D_2$ , ...,  $D_n$ 
  - A weak classifier is any classifier that has error rate strictly below 50%
- Each  $D_i$  is a weighted variant of original training data D
  - Initially all weights equal,  $D_1$
  - Going from  $D_i$  to  $D_{i+1}$ : increase weights where  $M_i$  makes mistakes on  $D_i$
  - $M_{i+1}$  will compensate for errors of  $M_i$
- Also, each model  $M_i$  gets a weight  $\alpha_i$  based on its accuracy on  $D_i$

- Build a sequence of weak classifiers  $M_1$ ,  $M_2$ , ...,  $M_n$  on inputs  $D_1$ ,  $D_2$ , ...,  $D_n$ 
  - A weak classifier is any classifier that has error rate strictly below 50%
- Each  $D_i$  is a weighted variant of original training data D
  - Initially all weights equal,  $D_1$
  - Going from  $D_i$  to  $D_{i+1}$ : increase weights where  $M_i$  makes mistakes on  $D_i$
  - $M_{i+1}$  will compensate for errors of  $M_i$
- Also, each model  $M_i$  gets a weight  $\alpha_i$  based on its accuracy on  $D_i$
- Ensemble output
  - Individual classification outcomes are  $\{-1, +1\}$
  - Unknown input x: ensemble outcome is weighted sum  $\sum_{i=1}^{\infty} \alpha_i M_i(x)$
  - Check if weighted sum is negative/positive



Initially, all data items have equal weight

- Initialize  $D_1(w_i) \leftarrow 1/n$  for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t)$ ;

4. 
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- 5. if  $e_t > \frac{1}{2}$  then
- $k \leftarrow k-1$ :
- exit-loop
- else
- $\beta_t \leftarrow e_t / (1 e_t);$   $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 10
- $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error

- Initialize  $D_1(w_i) \leftarrow 1/n$  for all i;
- for t = 1 to k do
  - $f_t \leftarrow \text{BaseLearner}(D_t);$

4. 
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i);$$

- 5. if  $e_1 > \frac{1}{2}$  then
- $k \leftarrow k-1$ :
- exit-loop
- else
- $\beta_{t} \leftarrow e_{t} / (1 e_{t});$   $D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$ 10
- $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%

- Initialize  $D_1(w_i) \leftarrow 1/n$  for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t)$ ;

4. 
$$e_t \leftarrow \sum_{i: f_t(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i);$$

- 5. 6.
- if  $e_t > \frac{1}{2}$  then  $k \leftarrow k-1$ ;
  - exit-loop
  - else
- $\beta_{t} \leftarrow e_{t} / (1 e_{t});$   $D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$ 10
- $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs

- Initialize  $D_1(w_i) \leftarrow 1/n$  for all i;
- for t = 1 to k do
- 3.  $f_t \leftarrow \text{BaseLearner}(D_t)$ ;

4. 
$$e_t \leftarrow \sum_{i: f_t(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i);$$

- 5. if  $e_t > \frac{1}{2}$  then
  - $k \leftarrow k-1$ :
- exit-loop
- 8. else

$$\beta_t \leftarrow e_t / (1 - e_t);$$

9. 
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10 
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

11. 
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize

- Initialize  $D_1(w_i) \leftarrow 1/n$  for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t)$ ;

4. 
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- if  $e_t > \frac{1}{2}$  then
- $k \leftarrow k-1$ :
- exit-loop
- 8. else

9. 
$$\beta_t \leftarrow e_t / (1 - e_t)$$

9. 
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10 
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

11. 
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

$$f_{\text{final}}(x) = \underset{y \in Y}{\arg \max} \sum_{t: f_t(x) = y} \log \frac{1}{\beta_t}$$

- Initialize  $D_1(w_i) \leftarrow 1/n$  for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t)$ ;

4. 
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- 5. if  $e_t > \frac{1}{2}$  then
  - $k \leftarrow k-1$ :
- exit-loop
- 8. else

9. 
$$\beta_t \leftarrow e_t / (1 - e_t)$$

9. 
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10 
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

11. 
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

 $\blacksquare$  Each  $M_i$  could be a different type of model

- $\blacksquare$  Each  $M_i$  could be a different type of model
- Can we pick best n out of N weak classifiers?

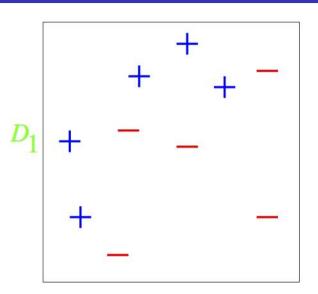
- Each  $M_i$  could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select  $M_1$  as model with lowest error rate among N candidates

- **Each**  $M_i$  could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select  $M_1$  as model with lowest error rate among N candidates
- Inductively, assume we have selected  $M_1, \ldots M_j$ , with model weights  $\alpha_1, \ldots, \alpha_j$ , and dataset is updated with new weights as  $D_{j+1}$

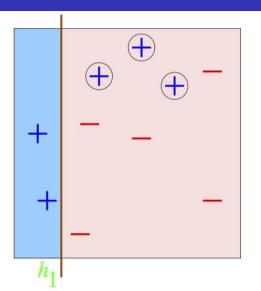
- **Each**  $M_i$  could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select  $M_1$  as model with lowest error rate among N candidates
- Inductively, assume we have selected  $M_1, \ldots M_j$ , with model weights  $\alpha_1, \ldots, \alpha_j$ , and dataset is updated with new weights as  $D_{j+1}$ 
  - Pick model with lowest error rate on  $D_{j+1}$  as  $M_{j+1}$
  - Calculate  $\alpha_{j+1}$  based on error rate of  $M_{j+1}$
  - lacksquare Reweight all training data based on error rate of  $M_{j+1}$

- **Each**  $M_i$  could be a different type of model
- Can we pick best n out of N weak classifiers?
- Initially all data items have equal weight, select  $M_1$  as model with lowest error rate among N candidates
- Inductively, assume we have selected  $M_1, \ldots M_j$ , with model weights  $\alpha_1, \ldots, \alpha_j$ , and dataset is updated with new weights as  $D_{j+1}$ 
  - Pick model with lowest error rate on  $D_{j+1}$  as  $M_{j+1}$
  - Calculate  $\alpha_{j+1}$  based on error rate of  $M_{j+1}$
  - Reweight all training data based on error rate of  $M_{j+1}$
- Note that same model M may be picked in multiple iterations, assigned different weights  $\alpha$

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights



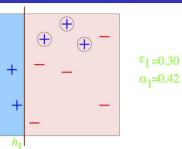
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line

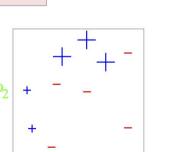


ε<sub>1</sub>

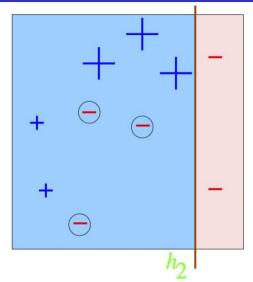
 $\alpha_1$ 

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
  - Increase weight of misclassified inputs





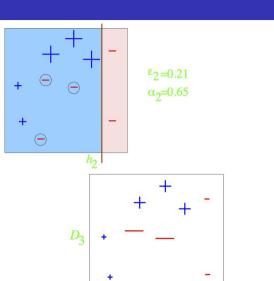
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
  - Increase weight of misclassified inputs
- Second separator: vertical line



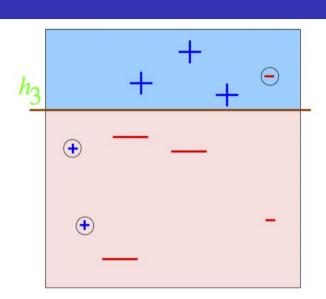
 $\epsilon_2$ 

a

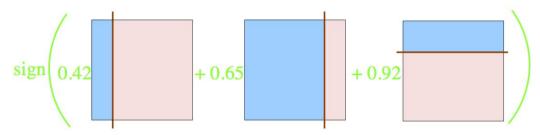
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
  - Increase weight of misclassified inputs
- Second separator: vertical line
  - Increase weight of misclassified inputs



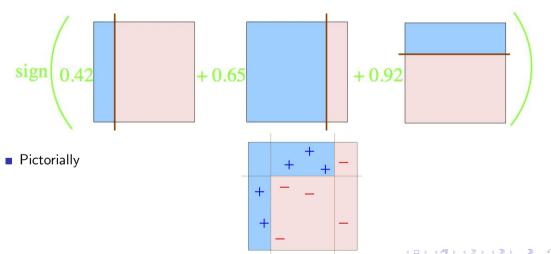
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
  - Increase weight of misclassified inputs
- Second separator: vertical line
  - Increase weight of misclassified inputs
- Third separator: horizontal line



■ Final classifier is weighted sum of three weak classifiers



■ Final classifier is weighted sum of three weak classifiers



# **Gradient Boosting**

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
  - Shortcomings of the current model are defined in terms of gradients
  - Gradient boosting = Gradient descent + boosting

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss

20 / 29

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3$ ,  $F(x_2) = 1.4$
  - . . . .

20 / 29

- Training data  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3, F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3$ ,  $F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

■ What should *h* look like?

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3, F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each  $x_i$ , want  $F(x_i) + h(x_i) = y_i$

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3$ ,  $F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each  $x_i$ , want  $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$

### Gradient Boosting for Regression

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3, F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each  $x_i$ , want  $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals  $y_i F(x_i)$

### Gradient Boosting for Regression

- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $v_2 = 1.3, F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each  $x_i$ , want  $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals  $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals  $y_i - [F(x_i) + h(x_i)]$

### Gradient Boosting for Regression

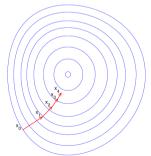
- Training data  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model *F* we build is good, but not perfect
  - $y_1 = 0.9, F(x_1) = 0.8$
  - $y_2 = 1.3$ ,  $F(x_2) = 1.4$
  - . . . .
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each  $x_i$ , want  $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals  $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals  $y_i - [F(x_i) + h(x_i)]$
- Why should this work?

#### Gradient descent

 Move parameters against the gradient with respect to loss function

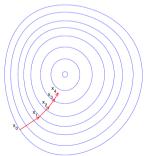
$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



#### Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



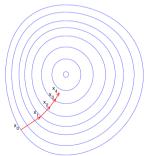
Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

#### Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

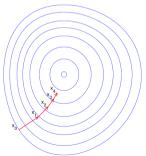
Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

#### Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

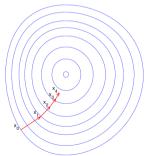
Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

#### Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

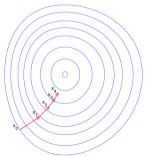
$$J = \sum_{i} L(y_i, F(x_i))$$

Residual  $y_i - F(x_i)$  is negative gradient

#### Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

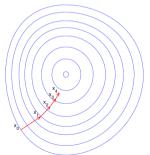
$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual  $y_i F(x_i)$  is negative gradient
- Fitting h to residual is same as fitting h to negative gradient

#### Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual  $y_i F(x_i)$  is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

Residuals are a special case — gradients for square loss

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
  - Absolute loss |y f(x)|
  - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
  - Absolute loss |y f(x)|
  - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

 More generally, boosting with respect to gradient rather than just residuals

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
  - Absolute loss |y f(x)|
  - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function *L*,
  - Start with an initial model F
  - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

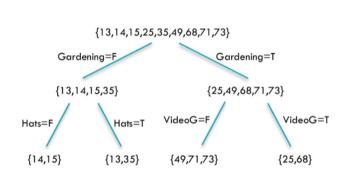
- Fit a regression tree h to negative gradients  $-g(x_i)$
- Update F to  $F + \rho h$
- $\rho$  is the learning rate

■ Predict age based on given attributes

| Person<br>ID | Age | Likes<br>Garden<br>ing | Plays<br>Video<br>Games | Likes<br>Hats |
|--------------|-----|------------------------|-------------------------|---------------|
| 1            | 13  | FALSE                  | TRUE                    | TRUE          |
| 2            | 14  | FALSE                  | TRUE                    | FALSE         |
| 3            | 15  | FALSE                  | TRUE                    | FALSE         |
| 4            | 25  | TRUE                   | TRUE                    | TRUE          |
| 5            | 35  | FALSE                  | TRUE                    | TRUE          |
| 6            | 49  | TRUE                   | FALSE                   | FALSE         |
| 7            | 68  | TRUE                   | TRUE                    | TRUE          |
| 8            | 71  | TRUE                   | FALSE                   | FALSE         |
| 9            | 73  | TRUE                   | FALSE                   | TRUE          |

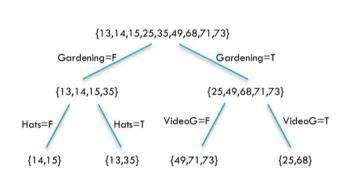
- Predict age based on given attributes
- Build a regression tree using CART algorithm

| Person<br>ID | Age | Likes<br>Garden<br>ing | Plays<br>Video<br>Games | Likes<br>Hats |
|--------------|-----|------------------------|-------------------------|---------------|
| 1            | 13  | FALSE                  | TRUE                    | TRUE          |
| 2            | 14  | FALSE                  | TRUE                    | FALSE         |
| 3            | 15  | FALSE                  | TRUE                    | FALSE         |
| 4            | 25  | TRUE                   | TRUE                    | TRUE          |
| 5            | 35  | FALSE                  | TRUE                    | TRUE          |
| 6            | 49  | TRUE                   | FALSE                   | FALSE         |
| 7            | 68  | TRUE                   | TRUE                    | TRUE          |
| 8            | 71  | TRUE                   | FALSE                   | FALSE         |
| 9            | 73  | TRUE                   | FALSE                   | TRUE          |



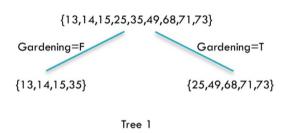
■ LikesHats seems irrelevant, yet pops up

| Person<br>ID | Age | Likes<br>Garden<br>ing | Plays<br>Video<br>Games | Likes<br>Hats |
|--------------|-----|------------------------|-------------------------|---------------|
| 1            | 13  | FALSE                  | TRUE                    | TRUE          |
| 2            | 14  | FALSE                  | TRUE                    | FALSE         |
| 3            | 15  | FALSE                  | TRUE                    | FALSE         |
| 4            | 25  | TRUE                   | TRUE                    | TRUE          |
| 5            | 35  | FALSE                  | TRUE                    | TRUE          |
| 6            | 49  | TRUE                   | FALSE                   | FALSE         |
| 7            | 68  | TRUE                   | TRUE                    | TRUE          |
| 8            | 71  | TRUE                   | FALSE                   | FALSE         |
| 9            | 73  | TRUE                   | FALSE                   | TRUE          |

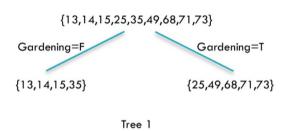


- LikesHats seems irrelevant, yet pops up
- Can we do better?

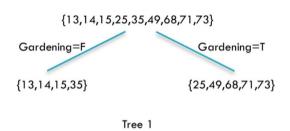
| Person<br>ID | Age | Likes<br>Garden<br>ing | Plays<br>Video<br>Games | Likes<br>Hats |
|--------------|-----|------------------------|-------------------------|---------------|
| 1            | 13  | FALSE                  | TRUE                    | TRUE          |
| 2            | 14  | FALSE                  | TRUE                    | FALSE         |
| 3            | 15  | FALSE                  | TRUE                    | FALSE         |
| 4            | 25  | TRUE                   | TRUE                    | TRUE          |
| 5            | 35  | FALSE                  | TRUE                    | TRUE          |
| 6            | 49  | TRUE                   | FALSE                   | FALSE         |
| 7            | 68  | TRUE                   | TRUE                    | TRUE          |
| 8            | 71  | TRUE                   | FALSE                   | FALSE         |
| 9            | 73  | TRUE                   | FALSE                   | TRUE          |



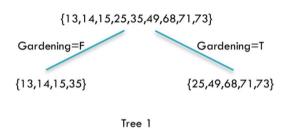
| PersonID | Age | Tree1<br>Prediction | Tree1<br>Residual |
|----------|-----|---------------------|-------------------|
| 1        | 13  | 19.25               | -6.25             |
| 2        | 14  | 19.25               | -5.25             |
| 3        | 15  | 19.25               | -4.25             |
| 4        | 25  | 57.2                | -32.2             |
| 5        | 35  | 19.25               | 15.75             |
| 6        | 49  | 57.2                | -8.2              |
| 7        | 68  | 57.2                | 10.8              |
| 8        | 71  | 57.2                | 13.8              |
| 9        | 73  | 57.2                | 15.8              |



| PersonID | Age | Tree1<br>Prediction | Tree1<br>Residual |
|----------|-----|---------------------|-------------------|
| 1        | 13  | 19.25               | -6.25             |
| 2        | 14  | 19.25               | -5.25             |
| 3        | 15  | 19.25               | -4.25             |
| 4        | 25  | 57.2                | -32.2             |
| 5        | 35  | 19.25               | 15.75             |
| 6        | 49  | 57.2                | -8.2              |
| 7        | 68  | 57.2                | 10.8              |
| 8        | 71  | 57.2                | 13.8              |
| 9        | 73  | 57.2                | 15.8              |



| PersonID | Age | Tree1<br>Prediction | Tree1<br>Residual |
|----------|-----|---------------------|-------------------|
| 1        | 13  | 19.25               | -6.25             |
| 2        | 14  | 19.25               | -5.25             |
| 3        | 15  | 19.25               | -4.25             |
| 4        | 25  | 57.2                | -32.2             |
| 5        | 35  | 19.25               | 15.75             |
| 6        | 49  | 57.2                | -8.2              |
| 7        | 68  | 57.2                | 10.8              |
| 8        | 71  | 57.2                | 13.8              |
| 9        | 73  | 57.2                | 15.8              |



| PersonID | Age | Tree1<br>Prediction | Tree1<br>Residual |
|----------|-----|---------------------|-------------------|
| 1        | 13  | 19.25               | -6.25             |
| 2        | 14  | 19.25               | -5.25             |
| 3        | 15  | 19.25               | -4.25             |
| 4        | 25  | 57.2                | -32.2             |
| 5        | 35  | 19.25               | 15.75             |
| 6        | 49  | 57.2                | -8.2              |
| 7        | 68  | 57.2                | 10.8              |
| 8        | 71  | 57.2                | 13.8              |
| 9        | 73  | 57.2                | 15.8              |

| {13,14,               | 15,25,35,49,68,71,73}                | PersonID | Age | Tree1<br>Prediction | Tree1<br>Residual |
|-----------------------|--------------------------------------|----------|-----|---------------------|-------------------|
| Gardening=F           | Gardening=T                          | 1        | 13  | 19.25               | -6.25             |
| {13,14,15,35}         | {25,49,68,71,73}                     | 2        | 14  | 19.25               | -5.25             |
|                       |                                      | 3        | 15  | 19.25               | -4.25             |
|                       | Tree 1                               | 4        | 25  | 57.2                | -32.2             |
| {-6.25,-5.25,-4.25,-3 | 2.2,15.75,-8.2,10.8,13.8,15.8}       | 5        | 35  | 19.25               | 15.75             |
| VideoGames=F          | VideoGames=T                         | 6        | 49  | 57.2                | -8.2              |
| videoGaines—i         | video Gaines – 1                     | 7        | 68  | 57.2                | 10.8              |
| {-8.2,13.8,15.8}      | {-6.25,-5.25,-4.25,-32.2,15.75,10.8} | 8        | 71  | 57.2                | 13.8              |
|                       | Tree 2                               | 9        | 73  | 57.2                | 15.8              |

|                        |                                      | Per<br>son<br>ID | A<br>g<br>e | Tree1<br>Predi<br>ction | Tree1<br>Resi<br>dual | Tree2<br>Predi<br>ction | Co<br>mbi<br>ned | Final<br>Resi<br>dual |
|------------------------|--------------------------------------|------------------|-------------|-------------------------|-----------------------|-------------------------|------------------|-----------------------|
| Gardening=F            | Gardening=T                          | 1                | 13          | 19.25                   | -6.25                 | -3.567                  | 15.68            | <del>-</del> 2.683    |
| {13,14,15,35}          | {25,49,68,71,73}                     | 2                | 14          | 19.25                   | -5.25                 | -3.567                  | 15.68            | <b>-</b> 1.683        |
| {13,14,13,33}          | (23,44,06,71,73)                     | 3                | 15          | 19.25                   | -4.25                 | -3.567                  | 15.68 -          | -0.6833               |
| Tree 1                 |                                      | 4                | 25          | 57.2                    | -32.2                 | -3.567                  | 53.63            | <b>-</b> 28.63        |
|                        |                                      | 5                | 35          | 19.25                   | 15.75                 | -3.567                  | 15.68            | <b>+</b> 19.32        |
| {-6.25,-5.25,-4.25,-32 | .2,15.75,-8.2,10.8,13.8,15.8}        | 6                | 49          | 57.2                    | -8.2                  | 7.133                   | 64.33            | <b>-</b> 15.33        |
| VideoGames=F           | VideoGames=T                         | 7                | 68          | 57.2                    | 10.8                  | -3.567                  | 53.63            | <b>+</b> 14.37        |
| (00100150)             | (4.05.505.405.000.1575.10.0)         | 8                | 71          | 57.2                    | 13.8                  | 7.133                   | 64.33            | <b>+</b> 6.667        |
| {-8.2,13.8,15.8} {-6.  | {-6.25,-5.25,-4.25,-32.2,15.75,10.8} | 9                | 73          | 57.2                    | 15.8                  | 7.133                   | 64.33            | <b>+</b> 8.667        |

Tree 2

| {13,14,15,25,35,49,68,71,73} |                                      | Per<br>son<br>ID | A<br>g<br>e | Tree1<br>Predi<br>ction | Tree1<br>Resi<br>dual | Tree2<br>Predi | Co<br>mbi<br>ned | Final<br>Resi<br>dual |
|------------------------------|--------------------------------------|------------------|-------------|-------------------------|-----------------------|----------------|------------------|-----------------------|
| Gardening=F                  | Gardening=T                          | 1                | 13          | 19.25                   | -6.25                 | -3.567         | 15.68            | <b>-</b> 2.683        |
| {13,14,15,35}                | ,14,15,35} {25,49,68,71,73}          | 2                | 14          | 19.25                   | -5.25                 | -3.567         | 15.68            | <b>-</b> 1.683        |
| (10,14,10,00)                | (20)-11/00/11/10                     | 3                | 15          | 19.25                   | -4.25                 | -3.567         | 15.68            | 0.6833                |
|                              | Tree 1                               |                  | 25          | 57.2                    | -32.2                 | -3.567         | 53.63            | <b>-</b> 28.63        |
|                              |                                      | 5                | 35          | 19.25                   | 15.75                 | -3.567         | 15.68            | <b>+</b> 19.32        |
| {-6.25,-5.25,-4.25,-32       | .2,15.75,-8.2,10.8,13.8,15.8}        | 6                | 49          | 57.2                    | -8.2                  | 7.133          | 64.33            | <b>-</b> 15.33        |
| VideoGames=F                 | VideoGames=T                         | 7                | 68          | 57.2                    | 10.8                  | -3.567         | 53.63            | <b>+</b> 14.37        |
| (                            |                                      | 8                | 71          | 57.2                    | 13.8                  | 7.133          | 64.33            | <b>+</b> 6.667        |
| {-8.2,13.8,15.8}             | {-6.25,-5.25,-4.25,-32.2,15.75,10.8} | 9                | 73          | 57.2                    | 15.8                  | 7.133          | 64.33            | <del>1</del> 8.667    |

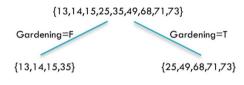
Tree 2

| {13.14.15.25.35.49.68.71.73} |                                      | Per<br>son<br>ID | A<br>g<br>e | Tree1<br>Predi<br>ction | Tree1<br>Resi<br>dual | Tree2<br>Predi<br>ction | Co<br>mbi<br>ned | Final<br>Resi<br>dual |
|------------------------------|--------------------------------------|------------------|-------------|-------------------------|-----------------------|-------------------------|------------------|-----------------------|
| Gardening-F                  | Gardening-1                          | 1                | 13          | 19.25                   | -6.25                 | -3.567                  | 15.68            | <del>-</del> 2.683    |
| {13,14,15,35}                | {25,49,68,71,73}                     | 2                | 14          | 19.25                   | -5.25                 | -3.567                  | 15.68            | <b>-</b> 1.683        |
| (,-,,                        | (,,,,,,,,,,,,,                       | 3                | 15          | 19.25                   | -4.25                 | -3.567                  | 15.68 -          | 0.6833                |
| Tree 1                       |                                      | 4                | 25          | 57.2                    | -32.2                 | -3.567                  | 53.63            | <b>-</b> 28.63        |
|                              |                                      | 5                | 35          | 19.25                   | 15.75                 | -3.567                  | 15.68            | <b>+</b> 19.32        |
| {-6.25,-5.25,-4.25,-32.      | 2,15.75,-8.2,10.8,13.8,15.8}         | 6                | 49          | 57.2                    | -8.2                  | 7.133                   | 64.33            | <b>-</b> 15.33        |
| VideoGames=F                 | VideoGames=T                         | 7                | 68          | 57.2                    | 10.8                  | -3.567                  | 53.63            | <b>+</b> 14.37        |
| ( 9 2 13 9 15 9)             | {-6.25,-5.25,-4.25,-32.2,15.75,10.8} | 8                | 71          | 57.2                    | 13.8                  | 7.133                   | 64.33            | <b>+</b> 6.667        |
| {-8.2,13.8,15.8}             | {-0.25,-5.25,-4.25,-32.2,15./5,10.8} | 9                | 73          | 57.2                    | 15.8                  | 7.133                   | 64.33            | <b>+</b> 8.667        |

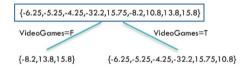
Tree 2

| {13,14,15,25,35,49,68,71,73}                               |                                      | Per<br>son<br>ID | A<br>g<br>e | Tree1<br>Predi<br>ction | Tree1<br>Resi<br>dual | Tree2<br>Predi<br>ction | Co<br>mbi<br>ned | Final<br>Resi<br>dual |
|------------------------------------------------------------|--------------------------------------|------------------|-------------|-------------------------|-----------------------|-------------------------|------------------|-----------------------|
| Gardening=F                                                | Gardening=T                          | 1                | 13          | 19.25                   | -6.25                 | -3.567                  | 15.68            | <b>-</b> 2.683        |
| {13,14,15,35}                                              | {25,49,68,71,73}                     | 2                | 14          | 19.25                   | -5.25                 | -3.567                  | 15.68            | <b>-</b> 1.683        |
|                                                            |                                      | 3                | 15          | 19.25                   | -4.25                 | -3.567                  | 15.68 -          | 0.6833                |
| Tree 1 {-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8} |                                      | 4                | 25          | 57.2                    | -32.2                 | -3.567                  | 53.63            | <b>-</b> 28.63        |
|                                                            |                                      | 5                | 35          | 19.25                   | 15.75                 | -3.567                  | 15.68            | <b>+</b> 19.32        |
|                                                            |                                      | 6                | 49          | 57.2                    | -8.2                  | 7.133                   | 64.33            | <b>-</b> 15.33        |
| VideoGames=F                                               | VideoGames=T                         | 7                | 68          | 57.2                    | 10.8                  | -3.567                  | 53.63            | <b>+</b> 14.37        |
| {-8.2,13.8,15.8}                                           | {-6.25,-5.25,-4.25,-32.2,15.75,10.8} | 8                | 71          | 57.2                    | 13.8                  | 7.133                   | 64.33            | <b>+</b> 6.667        |
|                                                            |                                      | 9                | 73          | 57.2                    | 15.8                  | 7.133                   | 64.33            | <b>+</b> 8.667        |

Tree 2



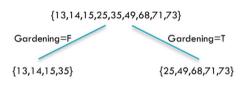
Tree 1



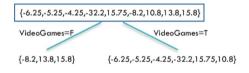
Tree 2

### General Strategy

■ Build tree 1, F<sub>1</sub>

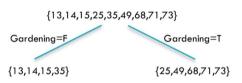


Tree 1

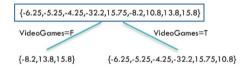


Tree 2

- Build tree 1, F<sub>1</sub>
- Fit a model to residuals,  $h_1(x) = y F_1(x)$

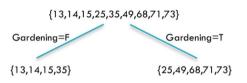


Tree 1

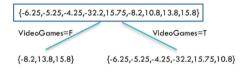


Tree 2

- Build tree 1, F<sub>1</sub>
- Fit a model to residuals,  $h_1(x) = y F_1(x)$
- Create a new model  $F_2(x) = F_1(x) + h_1(x)$

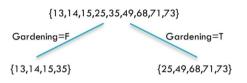


Tree 1

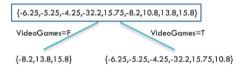


Tree 2

- Build tree 1, F<sub>1</sub>
- Fit a model to residuals,  $h_1(x) = y F_1(x)$
- Create a new model  $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals,  $h_2(x) = y F_2(x)$

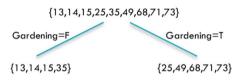


Tree 1

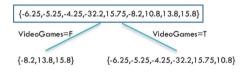


Tree 2

- Build tree 1, F<sub>1</sub>
- Fit a model to residuals,  $h_1(x) = y F_1(x)$
- Create a new model  $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals,  $h_2(x) = y F_2(x)$
- Create a new model  $F_3(x) = F_2(x) + h_2(x)$
- . . . .



Tree 1

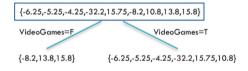


Tree 2

#### Learning Rate



Tree 1

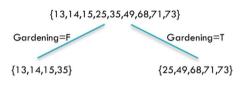


Tree 2

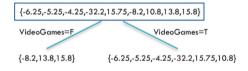
28 / 29

#### Learning Rate

 $\bullet$   $h_j$  fits residuals of  $F_j$ 



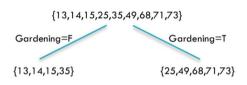
Tree 1



Tree 2

### Learning Rate

- $\blacksquare$   $h_j$  fits residuals of  $F_j$
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$ 
  - LR controls contribution of residual
  - $\blacksquare$  *LR* = 1 in our previous example



Tree 1

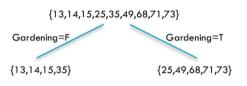


Tree 2

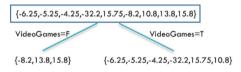
28 / 29

#### Learning Rate

- $\bullet$   $h_j$  fits residuals of  $F_j$
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$ 
  - LR controls contribution of residual
  - $\blacksquare$  LR = 1 in our previous example
- Ideally, choose LR separately for each residual to minimize loss function
  - Can apply different LR to different leaves



Tree 1



Tree 2