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Linear regression

Find the line that “fits” the
data best

Normal equation

Gradient descent

Linear: each parameter’s
contribution is independent

Input x : (x1, x2, . . . , xk)

y = θ0 + θ1x1 + · · ·+ θkxk
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The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = θ0 + θ1xi1 + θ2xi2 + θ11x
2
i1

+ θ22x
2
i2

+ θ12xi1xi2
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Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially
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Overfitting

Need to be careful about
adding higher degree terms

For n training points,can
always fit polynomial of
degree (n − 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data
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Regularization

1

2

n∑
i=1

(zi − yi )
2 +

k∑
j=1

θ2j

Second term penalizes curve complexity

Variations on regularatization

Ridge regression:
k∑

j=1

θ2j

LASSO regression:
k∑

j=1

|θj |

Elastic net regression:
k∑

j=1

λ1|θj |+ λ2θ
2
j
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The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = θ0 + θ1 log x1
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The non-polynomial case

Reverse the relationship

Plot per capita GDP in
terms of percentage of
urbanization

Now we take log of the
output variable
log y = θ0 + θ1x1

Log-linear transformation

Earlier was linear-log

Can also use log-log
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Regression for classification

Regression line

Set a threshold

Classifier

Output below threshold : 0 (No)

Output above threshold : 1 (Yes)

Classifier output is a step function
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Smoothen the step

Sigmoid function

σ(z) =
1

1 + e−z

Input z is output of our
regression

σ(z) =
1

1 + e−(θ0+θ1x1+···+θkxk )

Adjust parameters to fix
horizontal position and steepness
of step
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Logistic regression

Compute the coefficients?

Solve by gradient descent

Need derivatives to exist

Hence smooth sigmoid, not
step function

σ′(z) = σ(z)(1− σ(z))

Need a cost function to minimize
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Loss function for logistic regression

Goal is to maximize log likelihood

Let hθ(xi ) = σ(zi ). So, P(yi = 1 | xi ; θ) = hθ(xi ),
P(yi = 0 | xi ; θ) = 1− hθ(xi )

Combine as P(yi | xi ; θ) = hθ(xi )
yi · (1− hθ(xi ))1−yi

Likelihood: L(θ) =
n∏

i=1

hθ(xi )
yi · (1− hθ(xi ))1−yi

Log-likelihood: `(θ) =
n∑

i=1

yi log hθ(xi ) + (1− yi ) log(1− hθ(xi ))

Minimize cross entropy: −
n∑

i=1

yi log hθ(xi ) + (1− yi ) log(1− hθ(xi ))
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MSE for logistic regression and gradient descent

Suppose we take mean sum-squared error as the loss function.

Consider two inputs x = (x1, x2)

C =
1

n

n∑
i=1

(yi − σ(zi ))2, where zi = θ0 + θ1xi1 + θ2xi2

For gradient descent, we compute
∂C

∂θ1
,
∂C

∂θ2
,
∂C

∂θ0
For j = 1, 2,

∂C

∂θj
=

2

n

n∑
i=1

(yi − σ(zi )) · −∂σ(zi )

∂θj
=

2

n

n∑
i=1

(σ(zi )− yi )
∂σ(zi )

∂zi

∂zi
∂θj

=
2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )xij

∂C

∂θ0
=

2

n

n∑
i=1

(σ(zi )− yi )
∂σ(zi )

∂zi

∂zi
∂θ0

=
2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )

Madhavan Mukund Lecture 7: 14 February, 2022 DMML Jan–May 2022 13 / 20



MSE for logistic regression and gradient descent . . .

For j = 1, 2,
∂C

∂θj
=

2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )x

i
j , and

∂C

∂θ0
=

2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )

Each term in
∂C

∂θ1
,
∂C

∂θ2
,
∂C

∂θ0
is proportional to σ′(zi )

Ideally, gradient descent should take large steps when σ(z)− y is large

σ(z) is flat at both extremes

If σ(z) is completely wrong,
σ(z) ≈ (1− y), we still have
σ′(z) ≈ 0

Learning is slow even when current
model is far from optimal
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Cross entropy and gradient descent

C = −[y ln(σ(z)) + (1− y) ln(1− σ(z))]

∂C

∂θj
=
∂C

∂σ

∂σ

∂θj
= −

[
y

σ(z)
− 1− y

1− σ(z)

]
∂σ

∂θj

= −
[

y

σ(z)
− 1− y

1− σ(z)

]
∂σ

∂z

∂z

∂θj

= −
[

y

σ(z)
− 1− y

1− σ(z)

]
σ′(z)xj

= −
[
y(1− σ(z))− (1− y)σ(z)

σ(z)(1− σ(z))

]
σ′(z)xj
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Cross entropy and gradient descent . . .

∂C

∂θj
= −

[
y(1− σ(z))− (1− y)σ(z)

σ(z)(1− σ(z))

]
σ′(z)xj

Recall that σ′(z) = σ(z)(1− σ(z))

Therefore,
∂C

∂θj
= −[y(1− σ(z))− (1− y)σ(z)]xj

= −[y − yσ(z)− σ(z) + yσ(z)]xj

= (σ(z)− y)xj

Similarly,
∂C

∂θ0
= (σ(z)− y)

Thus, as we wanted, the gradient is proportional to σ(z)− y

The greater the error, the faster the learning rate
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Decision trees for regression

How do we use decision
trees for regression?

Partition the input into
intervals

For each interval, predict
mean value of output,
instead of majority class

Regression tree
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Decision trees for regression

Regression tree for noisy
quadratic centered around
x1 = 0.5

For each node, the output is
the mean y value for the
current set of points

Instead of impurity, use
mean squared error (MSE)
as cost function

Choose a split that
minimizes MSE
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Regression trees

Approximation using regression tree
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Regression trees

Extend the regression tree
one more level to get a finer
approximation

Set a threshold on MSE to
decide when to stop

Classification and
Regression Trees (CART)

Combined algorithm for
both use cases

Programming libraries
typically provide CART
implementation
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