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Finding the best fit line

m Training input is
{(Xl-/yl)v (X27y2)7 ) (men)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
1< 2
J(0) =5 > (ho(xi) = vi)

i=1

m Essentially, the sum squared error (SSE)

m Divide by n, mean squared error (MSE)
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]
r 1 X% DTS X]l-( T B _yl 7]
1 x3 - xXF y2
L X . .
1 Xil A Xik y yi
L1 Xy o X L o
m Write 6 as column vector, 7 = [ Oy 01 --- 04 }
1< 21 T
u J(0) = 5 D (ho(x) 1) = H(X0— ) T(X0~ y)
i=1

m Minimize J(6) — set Vy J(0) =0
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

Madhavan Mukund Lecture 6: 10 February, 2022 DMML Jan—May 2022 4/21



Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE I

Madhavan Mukund Lecture 6: 10 February, 2022 DMML Jan—May 2022



Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE

m Stop when we find the best fit line l

Madhavan Mukund Lecture 6: 10 February, 2022 DMML Jan—May 2022



Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE
m Stop when we find the best fit line

m How do we adjust the line?
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)
0 01

570 = 55 (h(x) — )2

= 2. %(hg(X) —)/)aae(hﬁ(x) _y)

1
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, —HJ(G) = Z(hg()(j) = Yj) X

00; =t
Batch gradient descent Stochastic gradient descent

m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)

{Gas), - Gcn )} m Adjust each parameter —

m Adjust each paarameter 0i = 0; —a-(ha(x5) — y) - X

=0 aa—einJ(@) Pros and cons
=0, —a- Z(ha(xf) )" XJ' m Faster progress for large batch size
j=1

m May oscillate indefinitely
m Repeat until convergence
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Regression and SSE loss

m Training input is {(x1, 1), (x2,¥2), .-+, (X0, ¥n)}
m Noisy outputs from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

m oy~ N(ui,0?), pi=0"x

m Model gives us an estimate for ¢, so regression learns yi; for each x;

m Want Maximum Likelihood Estimator (MLE) — maximize

c@) = 1] Puilx:6)
i=1

m Instead, maximize log likelihood

() = log (H P(yi | xi: e)) = " log(P(yi | xi:6))
i=1 =1

DMML Jan—-May 2022
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Log likelihood and SSE loss

1 =np? 1 =0T’
m oy = N(ui,0%),50 Py | x;;0) = ——=e 22 =-——e 27
P 2702

m Log likelihood (assuming natural logarithm)

Z og < (yffﬁ"F) — nlog < ! ) N Z (y=0"x)?
V2mo? V2ro? pt 202

m To maximize /(0) with respect to 0, ignore all terms that do not depend on 0

m Optimum value of ¢ is given by
n n
Omse = arg max [— Z(y,- — HTX,-)2] = arg min [Z(y,- — 0Tx,-)2]
0 i=1 0 i=1
m Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood
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The non-linear case

m What if the relationship is
not linear?

Madhavan Mukund
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The non-linear case

10

m What if the relationship is
not linear?

—— Predictions

m Here the best possible
explanation seems to be a
quadratic

m Non-linear : cross
dependencies

m Input x; : (X, ;)

m Quadratic dependencies:
y = 0o + 01x;, + O2x;, + 911X,-f + 922X,-§ + O12xi, Xi,
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The non-linear case

10

m Recall how we fit a line
to
1 x| { . }

m For quadratic, add new
coefficients and expand

—— Predictions

parameters
to
[1 X; X?} 01
)

Madhavan Mukund Lecture 6: 10 February, 2022 DMML Jan—May 2022 14 /21



The non-linear case

m Input (x;,, x;,) —— Predictions

m For the general quadratic
case, we are adding new
derived “features”

_ 2
Xy = X

_ 2
Xiy = XI-2
Xis = XipXip
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The non-linear case

m Original input matrix

1 X11
1 X2
1 Xi
L1 Xp

Madhavan Mukund

X1,
X2,

X, i

—— Predictions
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The non-linear case

m Expanded input matrix —— Predictions

- 5 o -
1 Xy, X, X3, Xg, XX
2

2
I xo, X2, X3, X5, Xo,X2,
. . 2 2 s
1 x; X Xi o Xg o Xy Xi

2 2
1 Xnp Xnp an XnQ Xny Xy d

m New columns are computed
and filled in from original
inputs

Madhavan Mukund Lecture 6: 10 February, 2022 DMML Jan—May 2022 17 /21



Exponential parameter blow-up

m Cubic derived features —— Predictions

2., 2.,
Xi2 Xiy s Xi2X13'
X X X2X'

B g2y
Xiy Xiy Xig s

2 2 2

n' Xf2 T3

Xiy Xiny Xiy Xigy XiyXiz,

Xiyr Xipy Xz -
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Higher degree polynomials

m How complex a polynomial

should we try? 10 1 7
300

-2 /

m Aim for degree that
minimizes SSE

m As degree increases,
features explode
exponentially
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itting

Need to be careful about
adding higher degree terms

For n training points,can
always fit polynomial of
degree (n — 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data

Madhavan Mukund
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Regularization

m Need to trade off SSE

against curve complexity 10 = J
4

-2 /

m So far, the only cost has
been SSE

m Add a cost related to
parameters (0o, 01,...,0k)

m Minimize, for instance

Z ~ ) +292
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Regularization

1 n 5 5 10 T
DICEIOES W T 7
i=1

Jj=1
m Second term penalizes curve complexity

m Variations on regularatization

k
m Ridge regression: 2912
j=1

K
m LASSO regression: Z 16;|
j=1
K
m Elastic net regression: Z M10;] + /\QOJ-Z
j=1
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