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Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i )

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hθ(xi ) from
the true answer yi?

Define a cost (loss) function

J(θ) =
1

2

n∑
i=1

(hθ(xi )− yi )
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
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Minimizing SSE

Write xi as row vector
[

1 x1i · · · xki
]

X =



1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

, y =



y1
y2
· · ·
yi
· · ·
yn


Write θ as column vector, θT =

[
θ0 θ1 · · · θk

]
J(θ) =

1

2

n∑
i=1

(hθ(xi )− yi )
2 =

1

2
(Xθ − y)T (Xθ − y)

Minimize J(θ) — set ∇θ J(θ) = 0
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Minimizing SSE iteratively

Normal equation θ = (XTX )−1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX )−1 is expensive, also need invertibility

Iterative approach, make an initial
guess
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Minimizing SSE iteratively

Normal equation θ = (XTX )−1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX )−1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?
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Gradient descent

How does cost vary with parameters
θ = (θ0, θ1, . . . , θk)?

Gradients
∂

∂θi
J(θ)

Adjust each parameter against gradient

θi = θi − α
∂

∂θi
J(θ)

For a single training sample (x , y)

∂

∂θi
J(θ) =

∂

∂θi

1

2
(hθ(x)− y)2

= 2 · 1

2
(hθ(x)− y)

∂

∂θi
(hθ(x)− y)

= (hθ(x)− y)
∂

∂θi

 k∑
j=0

θjxj

− y

 = (hθ(x)− y) · xi
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Gradient descent

For a single training sample (x , y),
∂

∂θi
J(θ) = (hθ(x)− y) · xi

Over the entire training set,
∂

∂θi
J(θ) =

n∑
j=1

(hθ(xj)− yj) · x ij

Batch gradient descent

Compute hθ(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

θi = θi − α
∂

∂θi
J(θ)

= θi − α ·
n∑

j=1

(hθ(xj)− yj) · x ij

Repeat until convergence

Stochastic gradient descent

For each input xj , compute hθ(xj)

Adjust each parameter —
θi = θi − α · (hθ(xj)− y) · x ij

Pros and cons

Faster progress for large batch size

May oscillate indefinitely
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Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = θT xi + ε

ε ∼ N (0, σ2) : Gaussian noise, mean 0, fixed variance σ2

yi ∼ N (µi , σ
2), µi = θT xi

Model gives us an estimate for θ, so regression learns µi for each xi

Want Maximum Likelihood Estimator (MLE) — maximize

L(θ) =
n∏

i=1

P(yi | xi ; θ)

Instead, maximize log likelihood

`(θ) = log

(
n∏

i=1

P(yi | xi ; θ)

)
=

n∑
i=1

log(P(yi | xi ; θ))
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Log likelihood and SSE loss

yi = N (µi , σ
2), so P(yi | xi ; θ) =

1√
2πσ2

e−
(y−µi )

2

2σ2 =
1√

2πσ2
e−

(y−θT xi )
2

2σ2

Log likelihood (assuming natural logarithm)

`(θ) =
n∑

i=1

log

(
1√

2πσ2
e−

(y−θT xi )
2

2σ2

)
= n log

(
1√

2πσ2

)
−

n∑
i=1

(y − θT xi )2

2σ2

To maximize `(θ) with respect to θ, ignore all terms that do not depend on θ

Optimum value of θ is given by

θ̂MSE = arg max
θ

[
−

n∑
i=1

(yi − θT xi )2
]

= arg min
θ

[
n∑

i=1

(yi − θT xi )2
]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood
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The non-linear case

What if the relationship is
not linear?
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The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = θ0 + θ1xi1 + θ2xi2 + θ11x
2
i1

+ θ22x
2
i2

+ θ12xi1xi2

Madhavan Mukund Lecture 6: 10 February, 2022 DMML Jan–May 2022 13 / 21



The non-linear case

Recall how we fit a line[
1 xi

] [ θ0
θ1

]

For quadratic, add new
coefficients and expand
parameters[

1 xi x2i
]  θ0

θ1
θ2


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The non-linear case

Input (xi1 , xi2)

For the general quadratic
case, we are adding new
derived “features”

xi3 = x2i1

xi4 = x2i2

xi5 = xi1xi2
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The non-linear case

Original input matrix

1 x11 x12
1 x21 x22
· · ·

1 xi1 xi2
· · ·

1 xn1 x2


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The non-linear case

Expanded input matrix

1 x11 x12 x211 x212 x11x12

1 x21 x22 x221 x222 x21x22
· · ·

1 xi1 xi2 x2i1 x2i2 xi1xi2
· · ·

1 xn1 xn2 x2n1 x2n2 xn1xn2


New columns are computed
and filled in from original
inputs
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Exponential parameter blow-up

Cubic derived features

x3i1 , x3i2 , x3i3 ,

x2i1xi2 , x2i1xi3 ,

x2i2xi1 , x2i2xi3 ,

x2i3xi1 , x2i3xi2 ,

xi1xi2xi3 ,

x2i1 , x2i2 , x2i3 ,

xi1xi2 , xi1xi3 , xi2xi3 ,

xi1 , xi2 , xi3 .
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Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially
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Overfitting

Need to be careful about
adding higher degree terms

For n training points,can
always fit polynomial of
degree (n − 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data
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Regularization

Need to trade off SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (θ0, θ1, . . . , θk)

Minimize, for instance

1

2

n∑
i=1

(zi − yi )
2 +

k∑
j=1

θ2j
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Regularization

1

2

n∑
i=1

(zi − yi )
2 +

k∑
j=1

θ2j

Second term penalizes curve complexity

Variations on regularatization

Ridge regression:
k∑

j=1

θ2j

LASSO regression:
k∑

j=1

|θj |

Elastic net regression:
k∑

j=1

λ1|θj |+ λ2θ
2
j
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