Lecture 6: 10 February, 2022

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

Finding the best fit line

- Training input is
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Each input x_{i} is a vector $\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- Add $x_{i}^{0}=1$ by convention
- y_{i} is actual output
- How far away is our prediction $h_{\theta}\left(x_{i}\right)$ from the true answer y_{i} ?
- Define a cost (loss) function

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Essentially, the sum squared error (SSE)
- Divide by n, mean squared error (MSE)

Minimizing SSE

- Write x_{i} as row vector $\left[\begin{array}{llll}1 & x_{i}^{1} & \cdots & x_{i}^{k}\end{array}\right]$
$\boldsymbol{\bullet} X=\left[\begin{array}{cccc}1 & x_{1}^{1} & \cdots & x_{1}^{k} \\ 1 & x_{2}^{1} & \cdots & x_{2}^{k} \\ & & \cdots & \\ 1 & x_{i}^{1} & \cdots & x_{i}^{k} \\ & & \cdots & \\ 1 & x_{n}^{1} & \cdots & x_{n}^{k}\end{array}\right], y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \cdots \\ y_{i} \\ \cdots \\ y_{n}\end{array}\right]$
- Write θ as column vector, $\theta^{\top}=\left[\begin{array}{llll}\theta_{0} & \theta_{1} & \cdots & \theta_{k}\end{array}\right]$
- $J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{2}(X \theta-y)^{\top}(X \theta-y)$
- Minimize $J(\theta)$ - set $\nabla_{\theta} J(\theta)=0$

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{T} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

■ Keep adjusting the line to reduce SSE

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{T} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Slow if n large, say $n>10^{4}$
- Matrix inversion $\left(X^{T} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?

Gradient descent

- How does cost vary with parameters

$$
\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) ?
$$

- Gradients $\frac{\partial}{\partial \theta_{i}} J(\theta)$
- Adjust each parameter against gradient
- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$
- For a single training sample (x, y)

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} J(\theta) & =\frac{\partial}{\partial \theta_{i}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \\
& =2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left(h_{\theta}(x)-y\right) \\
& =\left(h_{\theta}(x)-y\right) \frac{\partial}{\partial \theta_{i}}\left[\left(\sum_{j=0}^{k} \theta_{j} x_{j}\right)-y\right]=\left(h_{\theta}(x)-y\right) \cdot x_{i}
\end{aligned}
$$

Gradient descent

■ For a single training sample $(x, y), \frac{\partial}{\partial \theta_{i}} J(\theta)=\left(h_{\theta}(x)-y\right) \cdot x_{i}$

- Over the entire training set, $\frac{\partial}{\partial \theta_{i}} J(\theta)=\sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}$

Batch gradient descent

- Compute $h_{\theta}\left(x_{j}\right)$ for entire training set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Adjust each parameter

$$
\begin{aligned}
\theta_{i} & =\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta) \\
& =\theta_{i}-\alpha \cdot \sum_{j=1}^{n}\left(h_{\theta}\left(x_{j}\right)-y_{j}\right) \cdot x_{j}^{i}
\end{aligned}
$$

Stochastic gradient descent
■ For each input x_{j}, compute $h_{\theta}\left(x_{j}\right)$
■ Adjust each parameter -

$$
\theta_{i}=\theta_{i}-\alpha \cdot\left(h_{\theta}\left(x_{j}\right)-y\right) \cdot x_{j}^{i}
$$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely
- Repeat until convergence

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Noisy outputs from a linear function
- $y_{i}=\theta^{T} x_{i}+\epsilon$
- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{\top} x_{i}$
- Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}

■ Want Maximum Likelihood Estimator (MLE) - maximize

$$
\mathcal{L}(\theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)
$$

- Instead, maximize log likelihood

$$
\ell(\theta)=\log \left(\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)\right)=\sum_{i=1}^{n} \log \left(P\left(y_{i} \mid x_{i} ; \theta\right)\right)
$$

Log likelihood and SSE loss

- $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$

■ Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\mathrm{MSE}}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]=\underset{\theta}{\arg \min }\left[\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

- Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood

The non-linear case

- What if the relationship is not linear?

The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic

■ Non-linear: cross dependencies

■ Input $x_{i}:\left(x_{i_{1}}, x_{i_{2}}\right)$

- Quadratic dependencies:

$$
y=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}+\theta_{11} x_{i_{1}}^{2}+\theta_{22} x_{i_{2}}^{2}+\theta_{12} x_{i_{1}} x_{i_{2}}
$$

The non-linear case

- Recall how we fit a line

$$
\left[\begin{array}{ll}
1 & x_{i}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

- For quadratic, add new coefficients and expand parameters

$$
\left[\begin{array}{lll}
1 & x_{i} & x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$

The non-linear case

\square Input $\left(x_{i_{1}}, x_{i_{2}}\right)$

- For the general quadratic case, we are adding new derived "features"

$$
\begin{aligned}
& x_{i_{3}}=x_{i_{1}}^{2} \\
& x_{i_{4}}=x_{i_{2}}^{2} \\
& x_{i_{5}}=x_{i_{1}} x_{i_{2}}
\end{aligned}
$$

The non-linear case

■ Original input matrix
$\left[\begin{array}{ccc}1 & x_{1_{1}} & x_{1_{2}} \\ 1 & x_{2_{1}} & x_{2_{2}} \\ & \ldots & \\ 1 & x_{i_{1}} & x_{i_{2}} \\ & \cdots & \\ 1 & x_{n_{1}} & x_{2}\end{array}\right]$

The non-linear case

- Expanded input matrix
$\left[\begin{array}{cccccc}1 & x_{1_{1}} & x_{1_{2}} & x_{1_{1}}^{2} & x_{1_{2}}^{2} & x_{1_{1}} x_{1_{2}} \\ 1 & x_{2_{1}} & x_{2_{2}} & x_{2_{1}}^{2} & x_{2_{2}}^{2} & x_{2_{1}} x_{2_{2}} \\ & \ldots & & & \\ 1 & x_{i_{1}} & x_{i_{2}} & x_{i_{1}}^{2} & x_{i_{2}}^{2} & x_{i_{1}} x_{i_{2}} \\ & \ldots & & & \\ 1 & x_{n_{1}} & x_{n_{2}} & x_{n_{1}}^{2} & x_{n_{2}}^{2} & x_{n_{1}} x_{n_{2}}\end{array}\right]$

■ New columns are computed and filled in from original
 inputs

Exponential parameter blow-up

- Cubic derived features

$$
\begin{aligned}
& x_{i_{1}}^{3}, x_{i_{2}}^{3}, x_{i_{3}}^{3} \\
& x_{i_{1}}^{2} x_{i_{2}}, x_{i_{1}}^{2} x_{i_{3}} \\
& x_{i_{2}}^{2} x_{i_{1}}, x_{i_{2}}^{2} x_{i_{3}} \\
& x_{i_{3}}^{2} x_{i_{1}}, x_{i_{3}}^{2} x_{i_{2}} \\
& x_{i_{1}} x_{i_{2}} x_{i_{3}} \\
& x_{i_{1}}^{2}, x_{i_{2}}^{2}, x_{i_{3}}^{2} \\
& x_{i_{1}} x_{i_{2}}, x_{i_{1}} x_{i_{3}}, x_{i_{2}} x_{i_{3}} \\
& x_{i_{1}}, x_{i_{2}}, x_{i_{3}}
\end{aligned}
$$

Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE
- As degree increases, features explode exponentially

Overfitting

- Need to be careful about adding higher degree terms
- For n training points, can always fit polynomial of degree $(n-1)$ exactly

■ However, such a curve would not generalize well to new data points

- Overfitting — model fits training data well, performs poorly on unseen data

Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$
- Minimize, for instance

$$
\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-y_{i}\right)^{2}+\sum_{j=1}^{k} \theta_{j}^{2}
$$

Regularization

$$
\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-y_{i}\right)^{2}+\sum_{j=1}^{k} \theta_{j}^{2}
$$

- Second term penalizes curve complexity
- Variations on regularatization
- Ridge regression: $\sum_{j=1}^{k} \theta_{j}^{2}$
- LASSO regression: $\sum_{j=1}^{k}\left|\theta_{j}\right|$

- Elastic net regression: $\sum_{j=1}^{k} \lambda_{1}\left|\theta_{j}\right|+\lambda_{2} \theta_{j}^{2}$

