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A geometric view of supervised learning
|

Think of data as points in space

e Find a separating curve (surface)

Separable case
Each class is a connected region
A single curve can separate them
e More complex scenario

Classes form multiple connected
regions

Need multiple separators
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Linear separators

e Simplest case — linearly separable data
. . Linear Nonlinear
e Dual of linear regression

Find a line that passes close to a set
of points

Find a line that separates the two
sets of points

¢ Many lines are possible
How do we find the best one?

What is a good notion of "cost" to
optimize?
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Linear separators

e Each input x has n attributes <x;,X,...,Xp>

e Linear separator has the form
W1T1 + Woko + + -+ + Wpxy + b

e Classification criterion
w1y + - +wpr, + b >0, classify yes, + 1
wixy + - + wpx, +b <0, classify no, — 1

e Dot product (w - z)
(Wi, wy) - (T4, o0, &n) = WiTy + -+ - + WoTy,

¢ Collapsed form
(w-z)+b>0,(w-2)+b<0

¢ Rename bias b as wy, create fictitious xg=1

¢ Equation becomes

le& (w-z) >0, (w-z) <0




Perceptron algorithm
|
(Frank Rosenblatt, 1958)

¢ Each training input is (x,y;) where x; = <xij,X,,...,.x\,>
andy;=+lor-1 b

e Need to find w = <wg,wWy,...,w>.
Recall xiy = 1, always

Initialize w = (0,0,...,0)
While there exist ch that

y;=+1,and (w-z;) <0, or
yi=-1,and (w-z;) >0

Update w to w + x; 3;_
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Perceptron algorithm

¢ Keep updatingw as longas some trainingdataitemis
misclassified

e Updateisan offset by misclassified input
¢ Need notstabilize, potentially aninfinite loop
Theorem

If the points arelinearly separable, the Perceptron
algorithms always terminates with a valid separator

e Termination time depends on two factors

Width of the band separating the positive and
negative points

Narrow band takes longer to converge
Magnitude of the x values

Larger spread of points takes longer to
converge
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Perceptron Algorithm — Proof

Theorem

If there is w™ sati ;> 1 for all /, thep#trePereeptran Algorithm finds
a solution_w with{(w - x;)y; > 0 for all i in at mogt r?|w*|?> updates, Where

r ={max |xi|.
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Perceptron Algorithm — Proof

Theorem

If there is w* satisfying (w" - x;)y; > 1 for all /, then the Perceptron Algorithm finds
a solution w with (w - x;)y; > 0 for all i in at most r?|w*|?> updates, where
r = max|x;|.

1

m Assume w* exists. Keep track of two quantities: w ' w*,
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Perceptron Algorithm — Proof

Theorem

If there is w™* satisfying (w* - x;)y; > 1 &Qr all /, then the Perceptron Algorithm finds

a solution w with (w - x;)y; > 0 for all i inNag most r?|w*|? updates, where

r = max|x;|.
1

m Assume w* exists. Keep track of two quantitie§: w ' W*

m Each update increases w ' w* by at least 1.

@ ) w = wlw: + xl i YT 11
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Perceptron Algorithm — Proof

Theorem
If there is w* satisfying (w" - x;)y; > 1 for all /, then the Perceptron Algorithm finds

a
r

solutj with (w - x;)y; > 0 for all i in at most r?|w*|? updates, where
i

" . [ T,,,* .
m Assume w" exists. Keep track of two quantities: w ' w*, y":l w,xt< 0

m Each update increases WTW* by at least 1. H Al WEL S0
e
W+X,y, = —|—X yiw* >wiw*+1

m Each update increases

atmostr
(w4 20) T (w + x3%) ,w+@%/_2 @ < 1we @)

m Note that we update only when x. y;w
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates

m Then, w'w* > m, |w|> < mr?
1 N _
oo ed by \nereased IMJ"‘u:j W=9
ot luente | l’j ob lad % wiw¥=0
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates

T

m Then, w'w* > m, |w|> < mr?

momo<|wljw
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates
m Then, w'w* > m, |w|> < mr?
m m < |w|lw"|

m/lw*[ < |wl
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates

T

m Then, w'w* > m, |w|> < mr?

u m < |wljw]
m/lw*[ < |wl

m/lw*| < rym
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates

m Then, w'w* > m, |w|> < mr?

= om o< W
m/lw| < |w
m/lw| < r/m

Vm o< rlw
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates

m Then, w'w* > m, |w|> < mr?
[ | m <
m/|w*| <
m/|w*| <
vm <
m <
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Perceptron Algorithm — Proof (cont’d)

m Assume Perceptron Algorithm makes m updates H’W |_| w
m Then, w'w* > m, |w|> < mr? 0 D
n m < |w|lw"| 4 49
m/|w| < |w] ~
A -
milw'| < rym 2 EXy 2L,
Vm < rw
m < r?lw*? ﬂw.—ﬁll-\— )(ts—-x.\‘

m Note (for later) that final w is of the fory

Madhavan Mukund Lecture 17: 31 March, 2022 DMML Jan—May 2022 3/3



Linear separators

e Simplest case — linearly separable data

e Perceptron algorithm is a simple
procedure to find a linear separator, if one
exists

/Y

e Many lines are possible

Does the Perceptron algorithm find
the best one?

What is a good notion of "cost" to
optimize?
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Margin

e Each separator defines a margin

Empty corridor separating the points

Separator is the centre line of the
margin

Wider margin makes for a more robust ,

classifier

More gap between the classe

3‘ WA

e Optimum classifier is one that maximizes
the width of its margin

e Margin is defined by the training data
points on the boundary

Support vectors

' '. [ | .
c l & Support Vectors %rge Margin



Finding a maximum margin classifier

e Recall our original linear classifier
w1y + -+ wpr, +b >0, classify yes, + 1
wiky + -+ wpr, + b <0, classify no, — 1

¢ Scale margin so that separation is 1 on
either side
wyry + -+ wpxy, +b>1,  classify yes, + 1
wiry + -+ wpxn, + b < —1, classify no, — 1

e Using Pythagoras's theorem,
perpendicular distance to nearest support
vectoris 1 ,

[le]

where ||w|| = \/ wi +wi + - +w?

/
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Optimization problem

I .
¢ Want to maximize the overall margin 2
ol |Jw]]
e Equivalently, minimize ™11
d Y AN 2 -~ wa

J @
e Also, w should classify each (@i, y;) correctly

v
. /
®
@ . ¢
' ‘ /
wirh 4wz +b>1, iy =1 o
w4 Fwie, +b< —1, ify=—1

/
upport 7/
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Optimization problem
|

Minimiz Ul s Ve

wf/)b [

Subject to ®
wiwh + e twph +0> 1, ify =1 P @
wry + - Fwir, +b< -1, ify, =—1 *
o i uppoﬂ,/

¢ The objective function is not linear Vectors

@
\'\W. ||lw|| = \/ w? +wi + -+ w? ° N@ :
oot - = - 7 o
¢ This is a quadratic optimization problem, not gf"
linear programming S/’ S @
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Solution to optimization problem tWW @t:‘t\) MZ‘A’N;

|
e Convex optimization theory N, @V\S{"‘MA’ |
V/X

e Can be solved using computational oKy owéh— 2 /\\‘9

techniques . @ @ ’
¢ Solution expressed in terms of Lagrange ¢ Y

multipliers oy, o, . .., ® ®

one multiplier per training input i

upport /!
Vectors« ®

* (; is non-zero iff x; is a support vector ( - “ 3 N /
“I.l O ’
¢ Final classifier for new input 2

// 7
Il /

sign Z yzal )+ b » S
i€sv S AY ></ ] @

sv is set of support vectors gu",,‘— Vethrwe o @, X.&' ;C.v;) %q,:;,
le & Y3¥% <Xz 2 + Y2060 ¥ 27+



Support Vector Machine (SVM)

|
‘V/§
. Sy
sign g yiai{x; - z) + b - .
1ESU
. ®
Support Vector Machine (SVM) O i
¢ Solution depends only on support vectors P v upport /*
4 Vectors:
If we add more training data away from @
support vectors, separator does not 3
hange ® o
chang "z )
e Solution uses dot product of support vectors }\gf'
with new point NG :} ®
Will be used later, in the non-linear case S/
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The non-linear case
|

* Some points may lie on the wrong side of
the classifier

How do we account for these?

Add an error term to the classifier
requirement

¢ Instead of
& (w-z)+b>1, ify, =1
w‘x (w-z)+b< —1, ify, = —1
we have

K L{w-x)+b>1—§i, ify; =1
wyf““(w-x)+b<—l+§i, ify;=—1
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Soft margin classifier
|

(w-xz)y+b>1-¢&, ify =1 2 (w-X)+b=0
(w-z)y+b<—-1+4+¢, ify,=-—1 / . n

e Error term always non-negative, &i = 0

e If the point is correctly classified, error
term is O

¢ Soft margin — some points can drift across
the boundary

¢ Need to account for the errors in the
objective function

Minimize the need for non-zero
error terms
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Soft margin optimization

N
[[w]]
Minimize 9 + Z §z2
i=1

Subject to
& =>0
(w-x)+b>1-¢&, ify =1
(w-zx)y+b<—-14+¢, ify,=-—1

¢ Constraints include requirement that error
terms are non-negative

e Again the objective function is quadratic
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Soft margin optimization
|

e Can again be solved using convex /(W -x)+b=0

optimization theory

e Form of the solution turns out to be the
same as the hard margin case

Expression in terms of Lagrange
multipliers «;

Only terms corresponding to
support vectors are actively used

sign Zyzaz xi-z)+b

1€ SV
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The non-linear case

s YA *:.;_, .3
) ‘ &IS)

¢ How do we deal with datasets where
the separator is a complex shape?

; @
2,
?ﬁ:‘.‘ﬁ T

e Geometrically transform the data

- Typically,add dimensions 2
e Forinstance, if we can "lift" one class, .‘ o ° .
we can find a planar separator between e O @ o 7
® ® a® @
levels @ ®

° input space mapped space
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