Lecture 17: 31 March, 2022

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
- Each class is a connected region
- A single curve can separate them
- More complex scenario
- Classes form multiple connected regions
- Need multiple separators

Linear separators

- Simplest case - linearly separable data
- Dual of linear regression
- Find a line that passes close to a set of points
- Find a line that separates the two sets of points

Linear

- Many lines are possible
- How do we find the best one?
- What is a good notion of "cost" to optimize?

Linear separators

- Each input x has n attributes $\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle$
- Linear separator has the form $w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}+b$
- Classification criterion
$w_{1} x_{1}+\cdots+w_{n} x_{n}+b>0, \quad$ classify yes, +1 $w_{1} x_{1}+\cdots+w_{n} x_{n}+b<0, \quad$ classify no, -1
- Dot product $\langle w \cdot x\rangle$

$$
\left(w_{1}, \ldots, w_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)=w_{1} x_{1}+\cdots+w_{n} x_{n}
$$

- Collapsed form $\langle w \cdot x\rangle+b>0,\langle w \cdot x\rangle+b<0$
- Rename bias b as w_{0}, create fictitious $\mathrm{x}_{0}=1$

- Equation becomes

$$
\langle w \cdot x\rangle>0,\langle w \cdot x\rangle<0
$$

Perceptron algorithm

(Frank Rosenblatt, 1958)

- Each training input is $\left(x_{i}, y_{i}\right)$ where $x_{i}=\left\langle x_{1}^{i}, x^{i}{ }_{2}, \ldots, x_{n}^{i}\right\rangle$ and $y_{i}=+1$ or -1
- Need to find $w=\left\langle\mathrm{w}_{0}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\rangle$. Recall $x_{0}^{i}=1$, always

$$
\begin{aligned}
& \text { Initialize } w=\langle 0,0, \ldots, 0\rangle \\
& \text { While there exists }\left(x_{i}, y_{i}\right) \text { such that } \\
& \qquad \begin{array}{l}
y_{i}=+1 \text {, and }\left\langle w \cdot x_{i}\right\rangle<0 \text {, or } \\
y_{i}=-1 \text {, and }\left\langle w \cdot x_{i}\right\rangle>0 \\
\text { Update } w \text { to } w+x_{i} \boldsymbol{y}_{i}
\end{array}
\end{aligned}
$$

Perceptron algorithm

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
- Width of the band separating the positive and negative points
- Narrow band takes longer to converge
- Magnitude of the x values
- Larger spread of points takes longer to converge

$$
\begin{array}{ll}
W \cdot x_{i}>0 & y_{i}=1 \\
{ }^{2} \cdot x_{i} y_{i}>0 & x_{i}>\phi \mid \text { if } y_{l}=1 \\
W \cdot x_{i}<0 \text { w. } x_{i} y_{i} b y_{i}=-1 &
\end{array}
$$

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where $r=\max _{i}\left|x_{i}\right|$.

■ Assume w^{*} exists. Keep track of two quantities:

fred

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in most $r^{2}\left|w^{*}\right|^{2}$ updates, where
$r=\max _{i}\left|x_{i}\right|$.

- Assume w^{*} exists. Keep track of two quantitie : $w^{\top} w^{*}|w|^{2}$.
- Each update increases $w^{\top} w^{*}$ by at least 1.

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where

■ Assume w^{*} exists. Keep track of two quantities: $w^{\top} w^{*},|w|^{2}$.

$$
\begin{array}{ll}
y_{l}=1 & w \cdot x_{i}<0 \\
y_{1}-1 & w \cdot x_{l}>0
\end{array}
$$

- Each update increases $w^{\top} w^{*}$ by at least 1.

$$
\left(w+x_{i} y_{i}\right)^{\top} w^{*}=w^{\top} w^{*}+x_{i}^{\top} y_{i} w^{*} \geq w^{\top} w^{*}+1
$$

- Each update increases $|w|^{2}$ hy at most r^{2}

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

Perceptron Algorithm — Proof (contd)

- Assume Perception Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$
1

increased by
at least 1
m times

increased
by at least r^{2}
m times

Initially $w=0$

$$
\begin{aligned}
w^{\top} w^{*} & =0 \\
\mid w^{2} & =0
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$
- $m \leq|w|\left|w^{*}\right|$

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w|
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m}
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m} \\
\sqrt{m} & \leq r\left|w^{*}\right|
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$
- $\quad m \leq|w|\left|w^{*}\right|$
$m /\left|w^{*}\right| \leq|w|$
$m /\left|w^{*}\right| \leq r \sqrt{m}$
$\sqrt{m} \leq r\left|w^{*}\right|$
$m \leq r^{2}\left|w^{*}\right|^{2} \rightarrow$ magnatule of point -
inverse of widh of separatri

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$
- $m \leq|w|\left|w^{*}\right|$
$m /\left|w^{*}\right| \leq|w|$
$m /\left|w^{*}\right| \leq r \sqrt{m}$
$\sqrt{m} \leq r\left|w^{*}\right|$
$m \leq r^{2}\left|w^{*}\right|^{2}$

$\frac{\text { Heration }}{0}$	$\frac{\omega}{0}$
1	$\pm x_{i_{1}}$

$2 \pm x_{i_{1}} \pm x_{i_{2}}$

- Note (for later) that final w is of the for $\sum_{i} n_{i} x_{i}$

Linear separators

- Simplest case - linearly separable data
- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
- Does the Perceptron algorithm find the best one?
- What is a good notion of "cost" to optimize?

Margin

- Each separator defines a margin
- Empty corridor separating the points
- Separator is the centre line of the margin
- Wider margin makes for a more robust classifier
- More gap between the classed $Y-W \cdot X$
- Optimum classifier is one that maximizes the width of its margin
- Margin is defined by the training data points on the boundary
- Support vectors

Finding a maximum margin classifier

- Recall our original linear classifier
$\begin{array}{ll}w_{1} x_{1}+\cdots+w_{n} x_{n}+b>0, & \text { classify yes, }+1 \\ w_{1} x_{1}+\cdots+w_{n} x_{n}+b<0, & \text { classify no },-1\end{array}$
- Scale margin so that separation is 1 on either side
$w_{1} x_{1}+\cdots+w_{n} x_{n}+b>1, \quad$ classify yes, +1
$w_{1} x_{1}+\cdots+w_{n} x_{n}+b<-1$, classify no, -1
- Using Pythagoras's theorem, perpendicular distance to nearest support vector is $\frac{1}{\|w\|}$,
where $\|w\|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$

Optimization problem

- Want to maximize the overall margin $\frac{2}{\|w\|}$
- Equivalently, minimize $\frac{\|w\|}{2}$ - Objectue
- Also, w should classify each $\left(x_{i}, y_{i}\right)$ correctly

$$
\begin{cases}w_{1} x_{1}^{i}+\cdots+w_{n} x_{n}^{i}+b>1, & \text { if } y_{i}=1 \\ w_{1} x_{1}^{i}+\cdots+w_{n}^{i} x_{n}+b<-1, & \text { if } y_{i}=-1\end{cases}
$$

constraint

Optimization problem

Unlenowns we

 Wu ,boSubject to

$$
\begin{array}{ll}
w_{1} x_{1}^{i}+\cdots+w_{n} x_{n}^{i}+b>1, & \text { if } y_{i}=1 \\
w_{1} x_{1}^{i}+\cdots+w_{n}^{i} x_{n}+b<-1, & \text { if } y_{i}=-1
\end{array}
$$

- The objective function is not linear
linear constraint $\|w\|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$
- This is a quadratic optimization problem, not linear programming

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ one multiplier per training input
- α_{i} is non-zero iff x_{i} is a support vector
- Final classifier for new input z

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \underset{\sim}{\alpha_{i}}\left\langle x_{i} \cdot z\right\rangle+b\right]
$$

α, Constraint 1
α_{2} constr 2

- $s v$ is set of support vectors

$$
y_{3} x_{3}\left\langle x_{3} \cdot 2\right\rangle+y_{22} x_{22}\left\langle x_{22}-2\right\rangle+y_{27} v_{13}\left(x_{i} i\right.
$$

Support Vector Machine (SVM)

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left\langle x_{i} \cdot z\right\rangle+b\right]
$$

Support Vector Machine (SVM)

- Solution depends only on support vectors
- If we add more training data away from support vectors, separator does not change
- Solution uses dot product of support vectors with new point
- Will be used later, in the non-linear case
 $c^{m_{i}}$ ©

The non-linear case

- Some points may lie on the wrong side of the classifier
- How do we account for these?
- Add an error term to the classifier requirement
- Instead of

	$\langle w \cdot x\rangle+b>1$,	if $y_{i}=1$
snd	$\langle w \cdot x\rangle+b<-1$,	if $y_{i}=-1$

we have
T小刀 $\langle w \cdot x\rangle+b>1-\xi_{i}, \quad$ if $y_{i}=1$
gennorn $\langle w \cdot x\rangle+b<-1+\xi_{i}$, if $y_{i}=-1$
 $c^{m_{i}} \boldsymbol{\theta}$

Soft margin classifier

$$
\begin{array}{ll}
\langle w \cdot x\rangle+b>1-\xi_{i}, & \text { if } y_{i}=1 \\
\langle w \cdot x\rangle+b<-1+\xi_{i}, & \text { if } y_{i}=-1
\end{array}
$$

－Error term always non－negative，$\xi_{i} \geq 0$
－If the point is correctly classified，error term is 0
－Soft margin－some points can drift across the boundary
－Need to account for the errors in the objective function
－Minimize the need for non－zero error terms

Soft margin optimization

Minimize $\frac{\|w\|}{2}+\sum_{i=1}^{N} \xi_{i}^{2}$
Subject to

$$
\begin{array}{ll}
\xi_{i} \geq 0 & \\
\langle w \cdot x\rangle+b>1-\xi_{i}, & \text { if } y_{i}=1 \\
\langle w \cdot x\rangle+b<-1+\xi_{i}, & \text { if } y_{i}=-1
\end{array}
$$

- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic

Soft margin optimization

- Can again be solved using convex optimization theory
- Form of the solution turns out to be the same as the hard margin case
- Expression in terms of Lagrange multipliers α_{i}
- Only terms corresponding to support vectors are actively used

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left\langle x_{i} \cdot z\right\rangle+b\right]
$$

The non-linear case

- How do we deal with datasets where the separator is a complex shape?
- Geometrically transform the data
- Typically, add dimensions
- For instance, if we can "lift" one class, we can find a planar separator between levels

