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A geometric view of supervised learning 

ͻ Think of data as points in space

ͻ Find a separating curve (surface)

ͻ Separable case

� Each class is a connected region

� A single curve can separate them

ͻ More complex scenario

� Classes form multiple connected 
regions

� Need multiple separators



Linear separators

ͻ Simplest case ʹ linearly separable data

ͻ Dual of linear regression

� Find a line that passes close to a set 
of points

� Find a line that separates the two 
sets of points

ͻ Many lines are possible

� How do we find the best one?

� What is a good notion of "cost" to 
optimize?



Linear separators

ͻ Each input x has n attributes <x1,x2͕͙͕xn>

ͻ Linear separator has the form

ͻ Classification criterion

ͻ Dot product

ͻ Collapsed form

ͻ Rename bias b as w0, create fictitious x0 = 1

ͻ Equation becomes



Perceptron algorithm

(Frank Rosenblatt, 1958)

ͻ Each training input is (xi,yi) where xi = <xi
1,xi

2͕͙͕xi
n> 

and yi = +1 or ʹ1

ͻ Need to find w = <w0,w1͕͙͕wn>.
Recall xi

0 = 1, always

Initialize

While there exists such that

, and , or
, and

Update to

:
Yi



Perceptron algorithm

ͻ Keep updating w as long as some training data item is 
misclassified

ͻ Update is an offset by misclassified input
ͻ Need not stabilize, potentially an infinite loop
Theorem
If the points are linearly separable, the Perceptron 
algorithms always terminates with a valid separator
ͻ Termination time depends on two factors

� Width of the band separating the positive and 
negative points
� Narrow band takes longer to converge

� Magnitude of the x values
� Larger spread of points takes longer to 

converge



Perceptron Algorithm — Proof

Theorem

If there is w⇤ satisfying (w⇤ · xi )yi � 1 for all i , then the Perceptron Algorithm finds
a solution w with (w · xi )yi > 0 for all i in at most r2|w⇤|2 updates, where
r = max

i
|xi |.

Assume w⇤ exists. Keep track of two quantities: w>w⇤, |w |2.

Each update increases w>w⇤ by at least 1.

(w + xiyi )>w⇤ = w>w⇤ + x>i yiw⇤ � w>w⇤ + 1

Each update increases |w |2 by at most r2

(w + xiyi )>(w + xiyi ) = |w |2 + 2x>i yiw + |xiyi |2  |w |2 + |xi |2  |w |2 + r2

Note that we update only when x>i yiw < 0
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Perceptron Algorithm — Proof (cont’d)

Assume Perceptron Algorithm makes m updates

Then, w>w⇤ � m, |w |2  mr2

Note (for later) that final w is of the form
X

i

nixi

Madhavan Mukund Lecture 17: 31 March, 2022 DMML Jan–May 2022 3 / 3



Perceptron Algorithm — Proof (cont’d)

Assume Perceptron Algorithm makes m updates

Then, w>w⇤ � m, |w |2  mr2

Note (for later) that final w is of the form
X

i

nixi

Madhavan Mukund Lecture 17: 31 March, 2022 DMML Jan–May 2022 3 / 3

I

increased by
\
Increased

by atleast rz / lmhally w=o
atleast I wtwt -_ O
m times m times

IWTEO



Perceptron Algorithm — Proof (cont’d)
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Linear separators

ͻ Simplest case ʹ linearly separable data

ͻ Perceptron algorithm is a simple 
procedure to find a linear separator, if one 
exists

ͻ Many lines are possible

� Does the Perceptron algorithm find 
the best one?

� What is a good notion of "cost" to 
optimize?



Margin

ͻ Each separator defines a margin

� Empty corridor separating the points

� Separator is the centre line of the 
margin

ͻ Wider margin makes for a more robust 
classifier

� More gap between the classes

ͻ Optimum classifier is one that maximizes 
the width of its margin

ͻ Margin is defined by the training data 
points on the boundary

� Support vectors

÷::÷ :



Finding a maximum margin classifier

ͻ Recall our original linear classifier

ͻ Scale margin so that separation is 1 on 
either side

ͻ Using Pythagoras's theorem, 
perpendicular distance to nearest support 
vector is , 

where



Optimization problem

ͻ Want to maximize the overall margin

ͻ Equivalently, minimize

ͻ Also, should classify each correctly

- Objective-

-

l
constraints



Optimization problem

Minimize

Subject to

ͻ The constraints are linear
ͻ The objective function is not linear

ͻ This is a quadratic optimization problem, not 
linear programming

① Unknowns me

Wi ,
b

t
linear
constraints - -

-



Solution to optimization problem

ͻ Convex optimization theory

ͻ Can be solved using computational 
techniques

ͻ Solution expressed in terms of Lagrange 
multipliers
one multiplier per training input

ͻ is non-zero iff is a support vector

ͻ Final classifier for new input

ͻ sv is set of support vectors
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Support Vector Machine (SVM)

Support Vector Machine (SVM)

ͻ Solution depends only on support vectors

� If we add more training data away from 
support vectors, separator does not 
change

ͻ Solution uses dot product of support vectors 
with new point

� Will be used later, in the non-linear case



The non-linear case

ͻ Some points may lie on the wrong side of 
the classifier

ͻ How do we account for these?

ͻ Add an error term to the classifier 
requirement

ͻ Instead of

we have

I
¥:&

Too

generous



Soft margin classifier

ͻ Error term always non-negative,

ͻ If the point is correctly classified, error 
term is 0

ͻ Soft margin ʹ some points can drift across 
the boundary

ͻ Need to account for the errors in the 
objective function

� Minimize the need for non-zero 
error terms



Soft margin optimization

Minimize

Subject to

ͻ Constraints include requirement that error 
terms are non-negative

ͻ Again the objective function is quadratic



Soft margin optimization

ͻ Can again be solved using convex 
optimization theory

ͻ Form of the solution turns out to be the 
same as the hard margin case

� Expression in terms of Lagrange 
multipliers

� Only terms corresponding to 
support vectors are actively used



The non-linear case

ͻ How do we deal with datasets where 
the separator is a complex shape?

ͻ Geometrically transform the data

� Typically, add dimensions

ͻ For instance, if we can "lift" one class, 
we can find a planar separator between 
levels


