Lecture 11: 28 February, 2022

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–May 2022

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - Sequence of models based on independent bootstrap samples
 - Use voting to get an overall classifier
- How can we cope with high bias?

Dealing with bias

A biased model always makes mistakes

Build an ensemble of models to average out mistakes

э

< E

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes
- Mistakes should be compensated across models in the ensemble
 - How to build a sequence of models, each biased a different way?
 - Again, we assume we have only one set of training data

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%

Boosting

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1 $\mathbf{b} \sim \{\mathbf{w}_1, \dots, \mathbf{w}\}$
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i

Boosting

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_1 on inputs D_1, D_2, \ldots, D_1
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i
- Ensemble output
 - Individual classification outcomes are $\{-1, +1\}$
 - Unknown input x: ensemble outcome is weighted sum $\sum \alpha_i M_i(x)$
 - Check if weighted sum is negative/positive

Y 60 -+1

 Σ Mi(x)

Initially, all data items have equal weight

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do $f_t \leftarrow \text{BaseLearner}(D_t);$ 3. $e_i \leftarrow \sum D_i(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k-1$: 7. exit-loop 8. else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2. for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_t(D_t(\mathbf{x}_i)) \neq y_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8. else $\beta_t \leftarrow e_t / (1 - e_i);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_i \leftarrow \sum D_i(w_i);$ 4 $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ if $e_1 > \frac{1}{2}$ then 5. 6. $k \leftarrow k - 1$: 7. exit-loop 8. else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum^n D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ et small I-et large $e_i \leftarrow \sum D_i(w_i);$ 4 $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: $\begin{array}{c}
\underbrace{\beta_t \leftarrow e_t / (1 - e_t);} \\
D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases}
\beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\
1 & \text{otherwise}
\end{cases};$ $\underbrace{\gamma_{+1}(w_i) \leftarrow D_{t-1}(w_i)} \\
\end{array}$ 7. 8. 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize

 $\frac{0.25}{1-0.25} = \frac{1}{2} e_{t} = 0.25$

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all i; for t = 1 to k do 2 $e_k \leq V_2$ $f_t \leftarrow \text{BaseLearner}(D_t);$ 3. $e_i \leftarrow \sum D_i(w_i);$ $I: f_i(D_i(\mathbf{x}_i)) \neq V_i$ if $e_1 > \frac{1}{2}$ then Bt= 2 $\dot{k} \leftarrow \dot{k} - 1$: 0.49 exit-loop else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases}$ 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11.

4

5.

6.

7.

8.

9

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

$$f_{\mathsf{final}}(x) = \operatorname*{arg\,max}_{y \in Y}$$

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; for t = 1 to k do lt smill $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t \text{ smal graff}$ the should be large when for is small if $e_1 > \frac{1}{2}$ then $k \leftarrow k - 1$: exit-loop else $\beta_{t} \leftarrow e_{t} / (1 - e_{t});$ $D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$ 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

1. 2

3.

4

5.

6.

7.

8.

9

RF.

 $\sum \log \frac{1}{\beta}$

• Each M_i could be a different type of model

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?

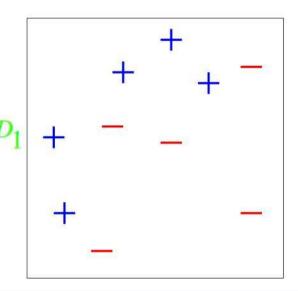
- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}

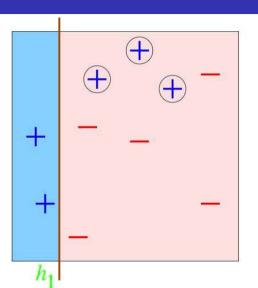
- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}
- Note that same model *M* may be picked in multiple iterations, assigned different weights *α*

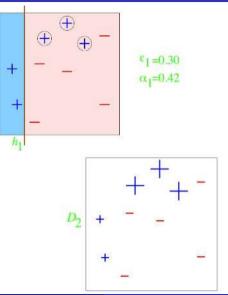
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights



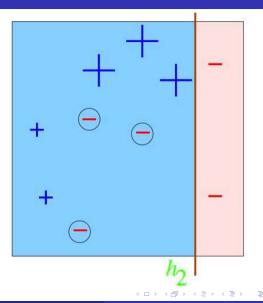
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line



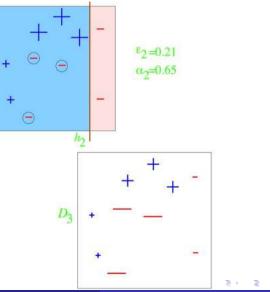
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs



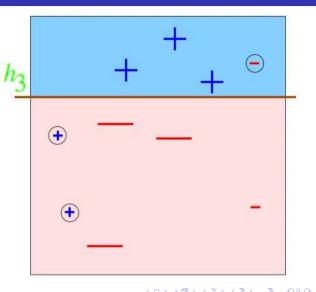
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line



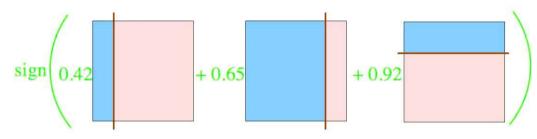
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs



- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs
- Third separator: horizontal line

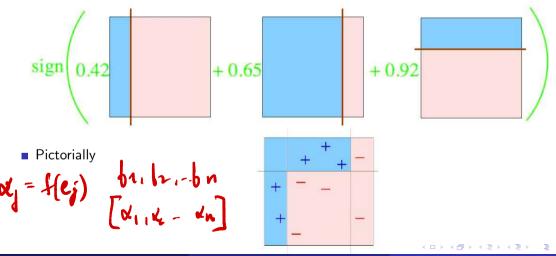


Final classifier is weighted sum of three weak classifiers



DMML Jan-May 2022 18 / 29

Final classifier is weighted sum of three weak classifiers



Gradient Boosting

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent
 - + boosting

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect

```
• y_1 = 0.9, F(x_1) = 0.8
• y_2 = 1.3, F(x_2) = 1.4
```

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$ • ...
- Add an additional model h, so that new prediction is F(x) + h(x)

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

What should h look like?

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$

Gradient Boosting for Regression

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$
- Fit a new model *h* (typically a regression tree) to the residuals y_i − F(x_i)

Gradient Boosting for Regression

- Training data $(x_1, y_1), (x_2, y_2), \ldots$ (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $v_1 = 0.9$, $F(x_1) = 0.8$ • $v_2 = 1.3$. $F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i - F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $v_i - [F(x_i) + h(x_i)]$ F'(KC)

Gradient Boosting for Regression

- Training data $(x_1, y_1), (x_2, y_2), \ldots$ (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model *F* we build is good, but not perfect
 - $v_1 = 0.9$, $F(x_1) = 0.8$ • $v_2 = 1.3$. $F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i - F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $v_i - [F(x_i) + h(x_i)]$
- Why should this work?

Gradient descent

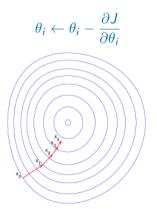
 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Gradient descent

Move parameters against the gradient with respect to loss function

Individual loss: $= (y - F(x))^2/2$ L(y, F(x))

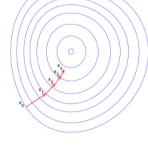


Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$



Gradient descent

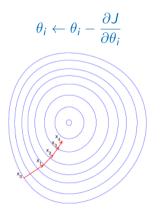
Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

- Individual loss: $L(y, F(x)) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum L(y_i, F(x_i))$ $= \frac{\partial J}{\partial F(x_i)} = F(x_i) - y \qquad (-1)$

Gradient descent

 Move parameters against the gradient with respect to loss function



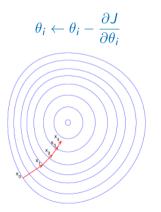
- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$ ∂J

•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

• Residual $y_i - F(x_i)$ is negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function



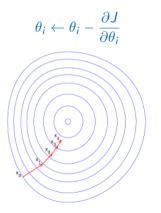
- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$

•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function



- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$

•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

 Residuals are a special case — gradients for square loss

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta\\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F| - \delta/2), & |y-F| > \delta \end{cases}$$

 More generally, boosting with respect to gradient rather than just residuals

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta\\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree *h* to negative gradients -g(x_i)
- Update F to $F + \rho h$
- ρ is the learning rate

Regression Trees

Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
з	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

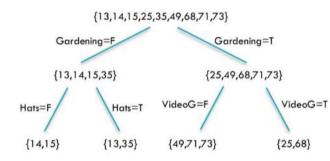
-

Lecture 11: 28 February, 2022

Regression Trees

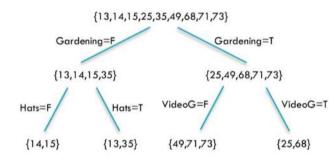
- Predict age based on given attributes
- Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats	
1	13	FALSE	TRUE	TRUE	
2	14	FALSE	TRUE	FALSE	
3	15	FALSE	TRUE	FALSE	
4	25	TRUE	TRUE	TRUE	
5	35	FALSE	TRUE	TRUE	
6	49	TRUE	FALSE	FALSE	
7	68	TRUE	TRUE	TRUE	
8	71	TRUE	FALSE	FALSE	
9	73	TRUE	FALSE	TRUE	



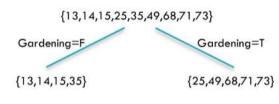
LikesHats seems irrelevant, yet pops up

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE



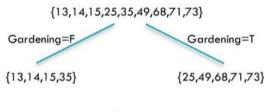
- LikesHats seems irrelevant, yet pops up
- Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats	
1	13	FALSE	TRUE	TRUE	
2	14	FALSE	TRUE	FALSE	
3	15	FALSE	TRUE	FALSE	
4	25	TRUE	TRUE	TRUE	
5	35	FALSE	TRUE	TRUE	
6	49	TRUE	FALSE	FALSE	
7	68	TRUE	TRUE	TRUE	
8	71	TRUE	FALSE	FALSE	
9	73	TRUE	FALSE	TRUE	



PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
з	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

イロト 不得 トイヨト イヨト



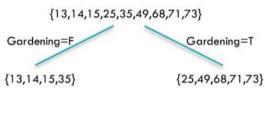
PersonID	Age	Tree1 Prediction	Tree1 Residual			
1	13	19.25	-6.25			
2	14	19.25	-5.25			
3	15	19.25	-4.25			
4	25	57.2	-32.2			
5	35	19.25	15.75			
6	49	57.2	-8.2			
7	68	57.2	10.8			
8	71	57.2	13.8			
9	73	57.2	15.8			

イロト 不得 トイヨト イヨト

Madhavan Mukund

Lecture 11: 28 February, 2022

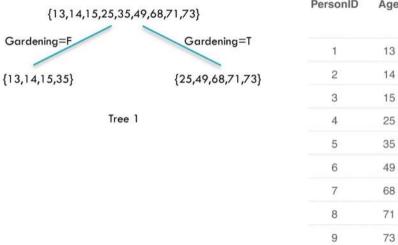
DMML Jan-May 2022 25 / 29



PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
З	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

э

イロト 不得 トイヨト イヨト

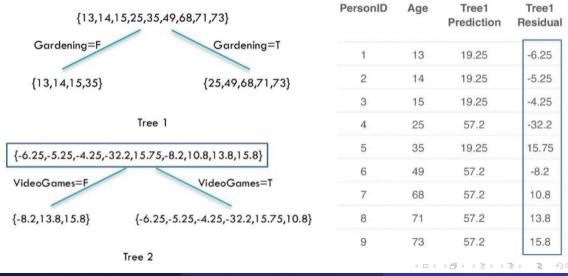


57.2

イロト イポト イヨト イヨト

15.8

Э



Madhavan Mukund

Lecture 11: 28 February, 2022

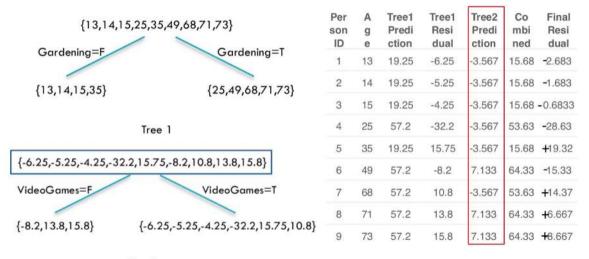
DMML Jan-May 2022 25 / 29

[12 14 15 25 25 40 49 71 72]		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	-2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	-1.683
{13,14,13,33}	{23,47,00,71,73}	3	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	-28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	2.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	-15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	8	71	57.2	13.8	7.133	64.33	+ 6.667
1-0.2,10.0,10.0}	1-0.20,-0.20,-4.20,-02.2,10.70,10.0}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

3

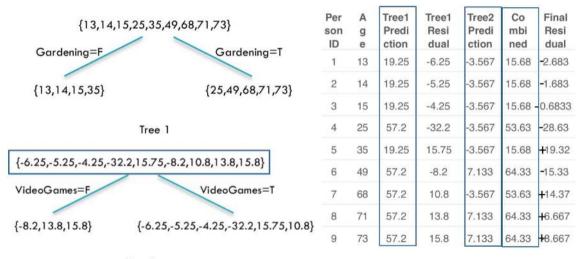
イロト 不得 トイヨト イヨト



Tree 2

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト



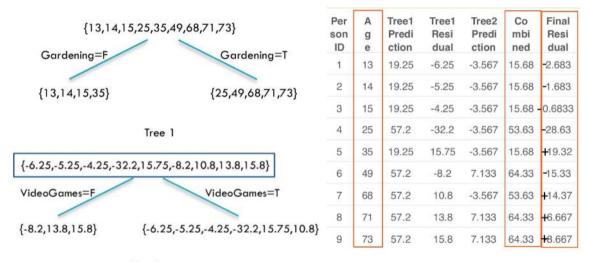
Tree 2

Madhavan Mukund

Lecture 11: 28 February, 2022

3

イロト イボト イヨト イヨト



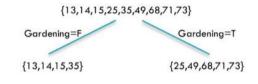
Tree 2

Madhavan Mukund

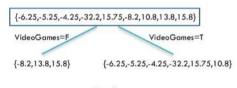
Lecture 11: 28 February, 2022

Gradient Boosting

General Strategy



Tree 1



イロト イポト イヨト イヨト

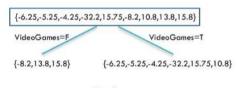
Tree 2

Э

Gradient Boosting

General Strategy

Build tree 1, F_1

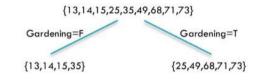


イロト イポト イヨト イヨト

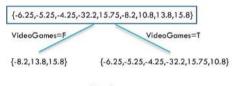
Tree 2

DMML Jan-May 2022 27 / 29

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$



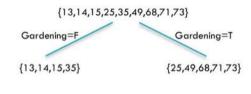
Tree 1



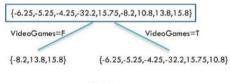
Tree 2

э

- Build tree 1. F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$



Tree 1

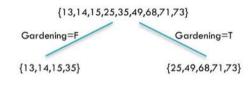


Tree 2

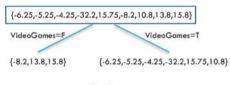
▶ < ∃ ▶</p> DMML Jan-May 2022 27 / 29

- E

- Build tree 1. F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$



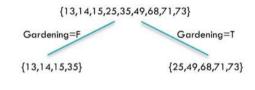
Tree 1



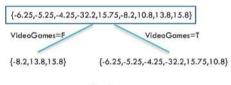
Tree 2

. . . .

- Build tree 1. F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$

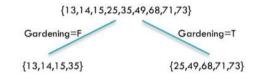


Tree 1

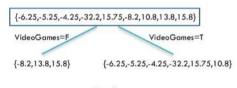


Tree 2

Learning Rate



Tree 1



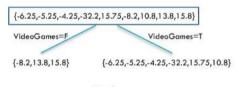
イロト イボト イヨト イヨト

Tree 2

3

Learning Rate

• h_j fits residuals of F_j



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Tree 2

DMML Jan–May 2022 28 / 29

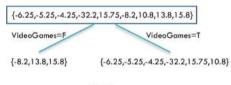
Э

Hyper Parameters

Learning Rate

- h_j fits residuals of F_j
- $F_{j+1}(x) = F_J(x) + LR \cdot h_j(x)$
 - LR controls contribution of residual
 - LR = 1 in our previous example

Tree 1



Tree 2

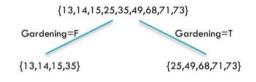
э

▶ ∢ ⊒

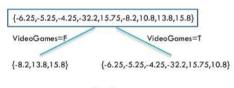
Hyper Parameters

Learning Rate

- \bullet *h_i* fits residuals of *F_i*
- $\bullet F_{i+1}(x) = F_i(x) + LR \cdot h_i(x)$
 - LR controls contribution of residual
 - LR = 1 in our previous example
- Ideally, choose LR separately for each residual to minimize loss function
 - Can apply different LR to different leaves



Tree 1



Tree 2