Lecture 23: 28 April, 2022

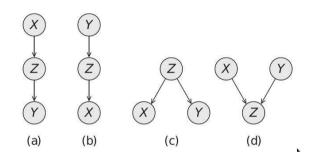
Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

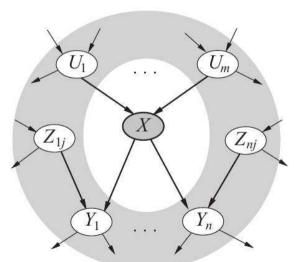
D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
 - Each undirected path from X to Y is a sequence of basic trails
 - For (a), (b), (c), need Z present
 - For (d), need Z absent
 - In general. V-structure includes descendants of the bottom node

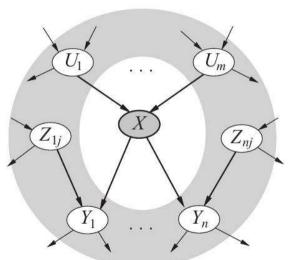


- x and y are D-separated given z if all trails are blocked
- \blacksquare Variation of breadth first search (BFS) to check if y is reachable from x through some trail
- **Extends** to sets each $x \in X$ is D-separated from each $y \in Y$

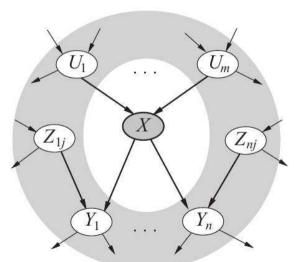
■ MB(X) — Markov blanket of X



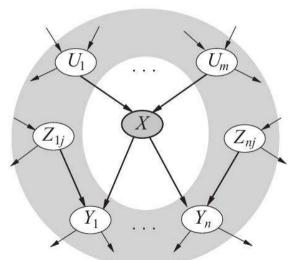
- MB(X) Markov blanket of X
 - \blacksquare Parents(X)



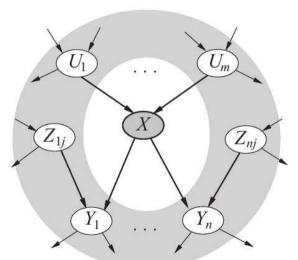
- MB(X) Markov blanket of X
 - \blacksquare Parents(X)
 - \blacksquare Children(X)



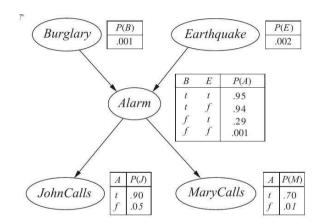
- MB(X) Markov blanket of X
 - Parents(X)
 - Children(X)
 - Parents of Children(X)



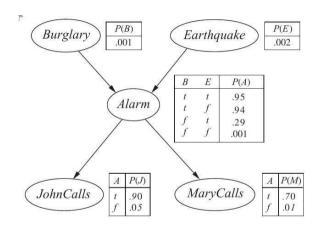
- MB(X) Markov blanket of X
 - Parents(X)
 - Children(X)
 - Parents of Children(X)
- $\blacksquare X \perp \neg MB(X) \mid MB(X)$



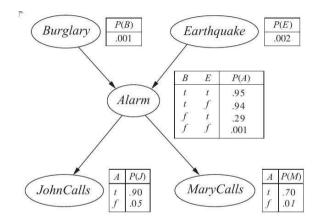
John and Mary call Pearl. What is the probability that there has been a burglary?



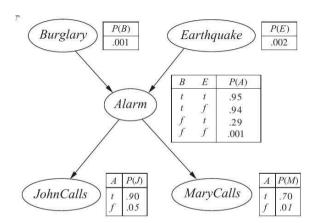
- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$



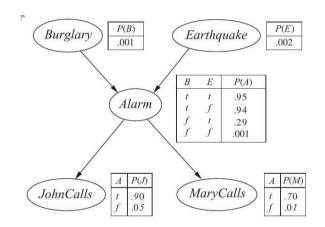
- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- P(b, m, j)



- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- P(b, m, j)
- Use chain rule to evaluate joint probabilities



- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- P(b, m, j) P(m, j)
- Use chain rule to evaluate joint probabilities
- Reorder variables appropriately, topological order of graph

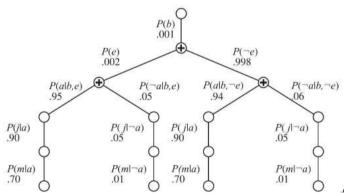


$$P(m,j,b) = P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b,e) P(m \mid a) P(j \mid a)$$

Madhavan Mukund Lecture 23: 28 April, 2022 DMML Jan-May 2022 5/

$$P(m,j,b) = P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b,e) P(m \mid a) P(j \mid a)$$

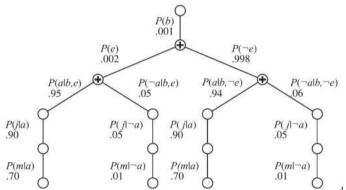
Construct the computation tree



5/9

$$P(m,j,b) = P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b,e) P(m \mid a) P(j \mid a)$$

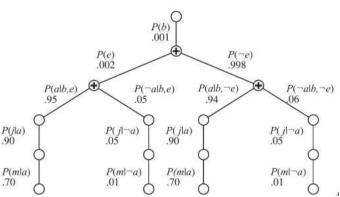
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations



5/9

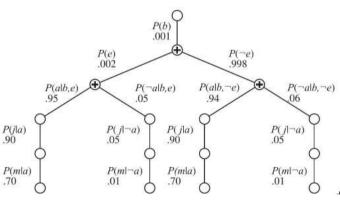
$$P(m,j,b) = P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b,e) P(m \mid a) P(j \mid a)$$

- Construct the computation tree
- Use dynamic programming to avoid duplicated computations
- However, exact inference is NP-complete, in general

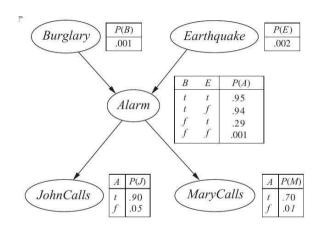


$$P(m,j,b) = P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b,e) P(m \mid a) P(j \mid a)$$

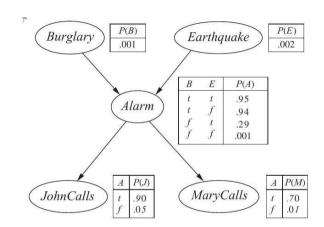
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations
- However, exact inference is NP-complete, in general
- Instead, approximate inference through sampling



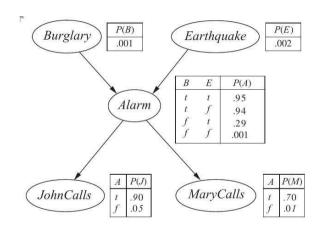
 Generate random samples (b, e, a, m, j), count to estimate probabilities



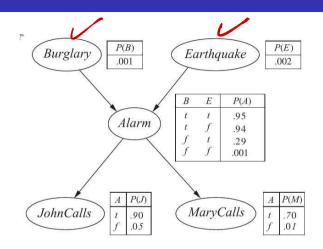
- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities

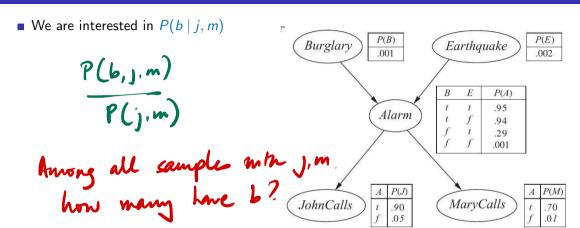


- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities
- Fix MB(x) before generating x

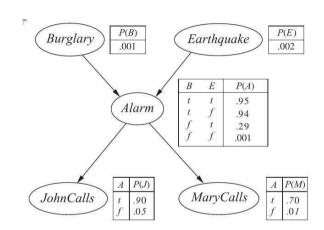


- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities
- Fix MB(x) before generating x
- Generate in topological order
 - Generate b, e with probabilities
 P(b) and P(e)
 - Generate a with probability $P(a \mid b, e)$
 - Generate j, m with probabilities $P(j \mid a)$, $P(m \mid a)$

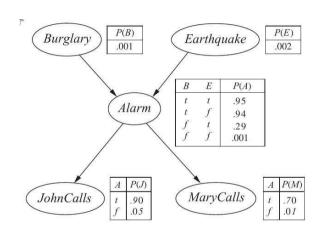




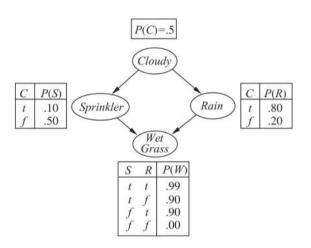
- We are interested in P(b | j, m)
- Samples with $\neg j$ or $\neg m$ are useless



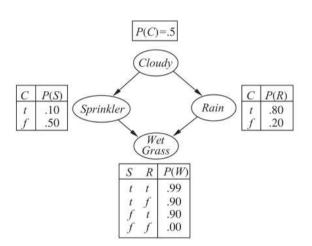
- We are interested in P(b | j, m)
- Samples with $\neg j$ or $\neg m$ are useless
- Can we sample more efficiently?



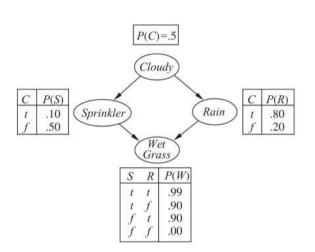
■ *P*(*Rain* | *Cloudy*, *Wet Grass*)



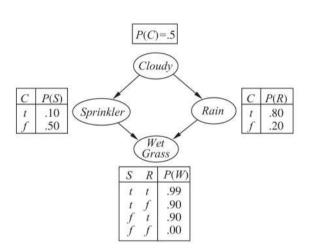
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Topological order
 - Generate *Cloudy*
 - Generate Sprinkler, Rain
 - Generate *Wet Grass*



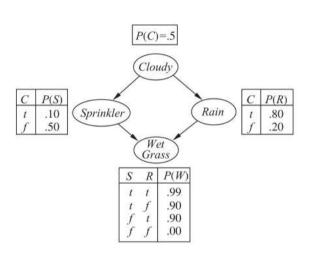
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Topological order
 - Generate *Cloudy*
 - Generate Sprinkler, Rain
 - Generate *Wet Grass*
- If we start with ¬Cloudy, sample is useless



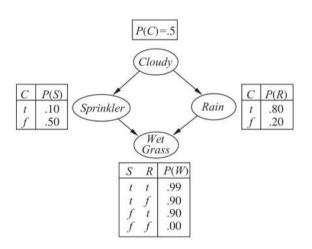
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Topological order
 - Generate *Cloudy*
 - Generate *Sprinkler*, *Rain*
 - Generate Wet Grass
- If we start with $\neg Cloudy$, sample is useless
- Immediately stop and reject this sample — rejection sampling



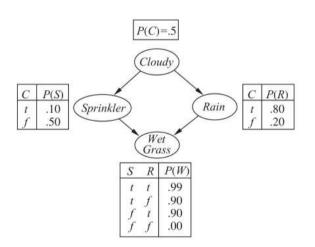
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Topological order
 - Generate *Cloudy*
 - Generate *Sprinkler*, *Rain*
 - Generate Wet Grass
- If we start with $\neg Cloudy$, sample is useless
- Immediately stop and reject this sample — rejection sampling
- General problem with low probability situation — lots of samples



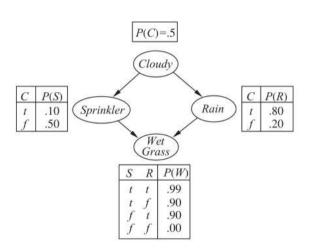
■ *P*(*Rain* | *Cloudy*, *Wet Grass*)



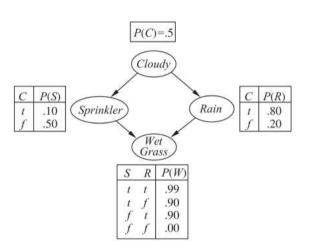
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Fix evidence Cloudy, Wet Grass true



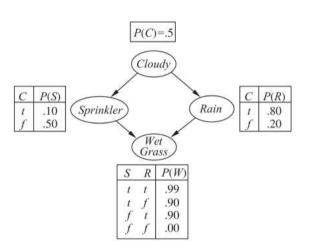
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables



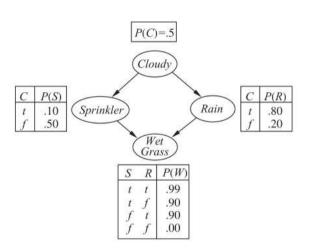
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$



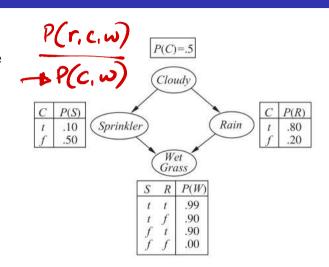
- P(Rain | Cloudy, Wet Grass)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9 = 0.45$



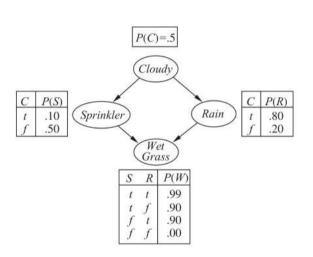
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9 = 0.45$
- 0.45 is likelihood weight of sample



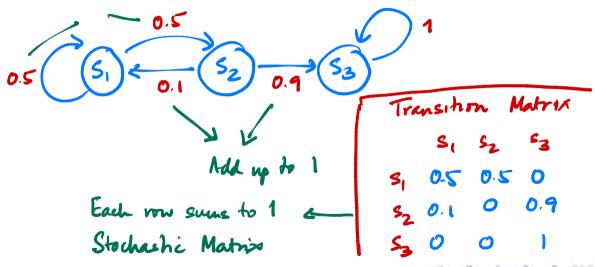
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9 = 0.45$
- 0.45 is likelihood weight of sample
- Samples $s_1, s_2, ..., s_N$ with weights $w_1, w_2, ... w_N$



- \blacksquare $P(Rain \mid Cloudy, Wet Grass)$
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9 = 0.45$
- 0.45 is likelihood weight of sample
- Samples $s_1, s_2, ..., s_N$ with weights $w_1, w_2, ..., w_N$
- $P(r \mid c, w) = \frac{\sum_{s_i \text{ has rain } W_i}}{\sum_{1 \le i \le N} w_i}$



Markov chains



Markov chains

$$S_1$$
 S_2 S_3
 S_1 0.5 0.5 0
 S_2 0.1 0 0.9
 S_3 0 0 1
 S_4 (0.25)
 S_4 (0.25)
 S_5 (0.25)
 S_5 (0.25)
 S_7 (0.25)

State Distribution

$$\begin{array}{c|c}
s_1 & 0 \\
s_2 & 0 \\
s_3 & 0
\end{array}$$

$$\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}$$

$$\begin{array}{c}
0.3 \\
0.25 \\
0.45
\end{array}$$

What happens in the limit? In this example, intentively

Markov chains

M State transition matrix

TU - State distribut

$$T_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$T_1 = ? \qquad T_0 \cdot M$$

$$T_{\nu} \begin{bmatrix} i \end{bmatrix} = \sum_{k=1}^3 T_0 \cdot M_{kj}$$

$$T_{k+1} = T_{\nu} M$$

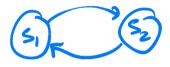
Stationery distribution

$$\pi^* = \pi^* M$$

M has a stationary distribution if it is engodic

- irreducible / strongly connected
- aperiodic

Periodic



Aperiodic: Ik s.t. 4si, sj. there exist paths of legth k, k+1, k+2, --- from sitt sj.

Claim If M is ergodic, M has a stationary distribbin

 $\times M = \times$

"Compute" To* by running the Markon cham long enough from any initial state Stationary distribution represents fraction of visits to cache state in a long enough execution How fast do we converge to TU*? "Mixing" time

Bayesian network variables
$$V_1,V_2,-:V_m$$

Each assignment of values to $V_0''s$ is a sample

Samples $X_1,X_2,--X_N$ - all possible configuals

 $V_1,V_2,-:V_m$
 $V_1,V_2,-:V_$

Design a Markov chain with N states

Si
$$\geq$$
 Xi

M

L

 π^*

Sc. $\pi^*_i = p_i$