


Bayesian classifiers

As before

Attributes {A1,A2, . . . ,Ak} and

Classes C = {c1, c2, . . . cℓ}
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Bayesian classifiers

As before

Attributes {A1,A2, . . . ,Ak} and

Classes C = {c1, c2, . . . cℓ}

Each class ci defines a probabilistic model for attributes

Pr(A1 = a1, . . . ,Ak = ak | C = ci )

Given a data item d = (a1, a2, . . . , ak), identify the best class c for d

Maximize Pr(C = ci | A1 = a1, . . . ,Ak = ak)
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Generative models

To use probabilities, need to describe how data is randomly generated

Generative model
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Choose a class cj with probability Pr(cj)
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Typically, assume a random instance is created as follows

Choose a class cj with probability Pr(cj)

Choose attributes a1, . . . , ak with probability Pr(a1, . . . , ak | cj)

Generative model has associated parameters θ = (θ1, . . . , θm)
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Generative models

To use probabilities, need to describe how data is randomly generated

Generative model

Typically, assume a random instance is created as follows

Choose a class cj with probability Pr(cj)

Choose attributes a1, . . . , ak with probability Pr(a1, . . . , ak | cj)

Generative model has associated parameters θ = (θ1, . . . , θm)

Each class probability Pr(cj) is a parameter

Each conditional probability Pr(a1, . . . , ak | cj) is a parameter

We need to estimate these parameters
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Maximum Likelihood Estimators

Our goal is to estimate parameters (probabilities) θ = (θ1, . . . , θm)
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Maximum Likelihood Estimators

Our goal is to estimate parameters (probabilities) θ = (θ1, . . . , θm)

Law of large numbers allows us to estimate probabilities by counting frequencies

Example: Tossing a biased coin, single parameter θ = Pr(heads)

N coin tosses, H heads and T tails

Why is θ̂ = H/N the best estimate?
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Maximum Likelihood Estimators

Our goal is to estimate parameters (probabilities) θ = (θ1, . . . , θm)

Law of large numbers allows us to estimate probabilities by counting frequencies

Example: Tossing a biased coin, single parameter θ = Pr(heads)

N coin tosses, H heads and T tails

Why is θ̂ = H/N the best estimate?

Likelihood

Actual coin toss sequence is τ = t1t2 . . . tN

Given an estimate of θ, compute Pr(τ | θ) — likelihood L(θ)
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Maximum Likelihood Estimators

Our goal is to estimate parameters (probabilities) θ = (θ1, . . . , θm)

Law of large numbers allows us to estimate probabilities by counting frequencies

Example: Tossing a biased coin, single parameter θ = Pr(heads)

N coin tosses, H heads and T tails

Why is θ̂ = H/N the best estimate?

Likelihood

Actual coin toss sequence is τ = t1t2 . . . tN

Given an estimate of θ, compute Pr(τ | θ) — likelihood L(θ)

θ̂ = H/N maximizes this likelihood — argmax
θ

L(θ) = θ̂ = H/N

Maximum Likelihood Estimator (MLE)
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Bayesian classification

Maximize Pr(C = ci | A1 = a1, . . . ,Ak = ak)

Madhavan Mukund Lecture 9: 21 February, 2022 DMML Jan–May 2022 5 / 19



Bayesian classification

Maximize Pr(C = ci | A1 = a1, . . . ,Ak = ak)

By Bayes’ rule,

Pr(C = ci | A1 = a1, . . . ,Ak = ak)

=
Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )

Pr(A1 = a1, . . . ,Ak = ak)
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Bayesian classification

Maximize Pr(C = ci | A1 = a1, . . . ,Ak = ak)

By Bayes’ rule,

Pr(C = ci | A1 = a1, . . . ,Ak = ak)

=
Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )

Pr(A1 = a1, . . . ,Ak = ak)

=
Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )

∑ℓ
j=1 Pr(A1 = a1, . . . ,Ak = ak | C = cj) · Pr(C = cj)

Denominator is the same for all ci , so sufficient to maximize

Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )
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Example

To classify A = g ,B = q

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example

To classify A = g ,B = q

Pr(C = t) = 5/10 = 1/2

Pr(A = g ,B = q | C = t) = 2/5

A B C
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g q t

g q f
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Example

To classify A = g ,B = q

Pr(C = t) = 5/10 = 1/2

Pr(A = g ,B = q | C = t) = 2/5

Pr(A = g ,B = q | C = t) · Pr(C = t) = 1/5

Pr(C = f ) = 5/10 = 1/2

Pr(A = g ,B = q | C = f ) = 1/5

A B C

m b t

m s t

g q t
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g q f
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Example

To classify A = g ,B = q

Pr(C = t) = 5/10 = 1/2

Pr(A = g ,B = q | C = t) = 2/5

Pr(A = g ,B = q | C = t) · Pr(C = t) = 1/5

Pr(C = f ) = 5/10 = 1/2

Pr(A = g ,B = q | C = f ) = 1/5

Pr(A = g ,B = q | C = f ) · Pr(C = f ) = 1/10

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example

To classify A = g ,B = q

Pr(C = t) = 5/10 = 1/2

Pr(A = g ,B = q | C = t) = 2/5

Pr(A = g ,B = q | C = t) · Pr(C = t) = 1/5

Pr(C = f ) = 5/10 = 1/2

Pr(A = g ,B = q | C = f ) = 1/5

Pr(A = g ,B = q | C = f ) · Pr(C = f ) = 1/10

Hence, predict C = t

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example . . .

What if we want to classify A = m,B = q?
A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example . . .

What if we want to classify A = m,B = q?

Pr(A = m,B = q | C = t) = 0
A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example . . .

What if we want to classify A = m,B = q?

Pr(A = m,B = q | C = t) = 0

Also Pr(A = m,B = q | C = f ) = 0!

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example . . .

What if we want to classify A = m,B = q?

Pr(A = m,B = q | C = t) = 0

Also Pr(A = m,B = q | C = f ) = 0!

To estimate joint probabilities across all
combinations of attributes, we need a much
larger set of training data

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Näıve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

Pr(A1 = a1, . . . ,Ak = ak | C = ci ) =

k
∏

j=1

Pr(Aj = aj | C = ci )

Pr(C = ci ) is fraction of training data with class ci

Pr(Aj = aj | C = ci ) is fraction of training data labelled ci for which Aj = aj

Madhavan Mukund Lecture 9: 21 February, 2022 DMML Jan–May 2022 8 / 19



Näıve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

Pr(A1 = a1, . . . ,Ak = ak | C = ci ) =

k
∏

j=1

Pr(Aj = aj | C = ci )

Pr(C = ci ) is fraction of training data with class ci

Pr(Aj = aj | C = ci ) is fraction of training data labelled ci for which Aj = aj

Final classification is

argmax
ci

Pr(C = ci )
k
∏

j=1

Pr(Aj = aj | C = ci )
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Näıve Bayes classifier . . .

Conditional independence is not theoretically justified
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Näıve Bayes classifier . . .

Conditional independence is not theoretically justified

For instance, text classification

Items are documents, attributes are words (absent or present)

Classes are topics

Conditional independence says that a document is a set of words: ignores
sequence of words

Meaning of words is clearly affected by relative position, ordering
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Näıve Bayes classifier . . .

Conditional independence is not theoretically justified

For instance, text classification

Items are documents, attributes are words (absent or present)

Classes are topics

Conditional independence says that a document is a set of words: ignores
sequence of words

Meaning of words is clearly affected by relative position, ordering

However, naive Bayes classifiers work well in practice, even for text
classification!

Many spam filters are built using this model
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Example revisited

Want to classify A = m,B = q

Pr(A = m,B = q | C = t) = Pr(A = m,B = q | C = f ) = 0 A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Pr(A = m | C = t) = 2/5
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Example revisited

Want to classify A = m,B = q

Pr(A = m,B = q | C = t) = Pr(A = m,B = q | C = f ) = 0

Pr(A = m | C = t) = 2/5

Pr(B = q | C = t) = 2/5

Pr(A = m | C = f ) = 1/5

Pr(B = q | C = f ) = 2/5

Pr(A = m | C = t) · Pr(B = q | C = t) · Pr(C = t) = 2/25

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example revisited

Want to classify A = m,B = q

Pr(A = m,B = q | C = t) = Pr(A = m,B = q | C = f ) = 0

Pr(A = m | C = t) = 2/5

Pr(B = q | C = t) = 2/5

Pr(A = m | C = f ) = 1/5

Pr(B = q | C = f ) = 2/5

Pr(A = m | C = t) · Pr(B = q | C = t) · Pr(C = t) = 2/25

Pr(A = m | C = f ) · Pr(B = q | C = f ) · Pr(C = f ) = 1/25

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example revisited

Want to classify A = m,B = q

Pr(A = m,B = q | C = t) = Pr(A = m,B = q | C = f ) = 0

Pr(A = m | C = t) = 2/5

Pr(B = q | C = t) = 2/5

Pr(A = m | C = f ) = 1/5

Pr(B = q | C = f ) = 2/5

Pr(A = m | C = t) · Pr(B = q | C = t) · Pr(C = t) = 2/25

Pr(A = m | C = f ) · Pr(B = q | C = f ) · Pr(C = f ) = 1/25

Hence predict C = t

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Zero counts

Suppose A = a never occurs in the test set with C = c
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Zero counts

Suppose A = a never occurs in the test set with C = c

Setting Pr(A = a | C = c) = 0 wipes out any product

k
∏

i=1

Pr(Ai = ai | C = c)

in which this term appears
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in which this term appears

Assume Ai takes mi values {ai1, . . . , aimi
}
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Zero counts

Suppose A = a never occurs in the test set with C = c

Setting Pr(A = a | C = c) = 0 wipes out any product

k
∏

i=1

Pr(Ai = ai | C = c)

in which this term appears

Assume Ai takes mi values {ai1, . . . , aimi
}

“Pad” training data with one sample for each value aj — mi extra data items
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Zero counts

Suppose A = a never occurs in the test set with C = c

Setting Pr(A = a | C = c) = 0 wipes out any product

k
∏

i=1

Pr(Ai = ai | C = c)

in which this term appears

Assume Ai takes mi values {ai1, . . . , aimi
}

“Pad” training data with one sample for each value aj — mi extra data items

Adjust Pr(Ai = ai | C = cj) to
nij + 1

nj +mi

where

nij is number of samples with Ai = ai , C = cj

nj is number of samples with C = cj
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Smoothing

Laplace’s law of succession

Pr(Ai = ai | C = cj) =
nij + 1

nj +mi
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Smoothing

Laplace’s law of succession

Pr(Ai = ai | C = cj) =
nij + 1

nj +mi

More generally, Lidstone’s law of succession, or smoothing

Pr(Ai = ai | C = cj) =
nij + λ

nj + λmi
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Smoothing

Laplace’s law of succession

Pr(Ai = ai | C = cj) =
nij + 1

nj +mi

More generally, Lidstone’s law of succession, or smoothing

Pr(Ai = ai | C = cj) =
nij + λ

nj + λmi

λ = 1 is Laplace’s law of succession
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Text classification

Classify text documents using topics
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Text classification

Classify text documents using topics

Useful for automatic segregation of newsfeeds, other internet content

Training data has a unique topic label per document — e.g., Sports, Politics,
Entertainment
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Text classification

Classify text documents using topics

Useful for automatic segregation of newsfeeds, other internet content

Training data has a unique topic label per document — e.g., Sports, Politics,
Entertainment

Want to use a näıve Bayes classifier
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Text classification

Classify text documents using topics

Useful for automatic segregation of newsfeeds, other internet content

Training data has a unique topic label per document — e.g., Sports, Politics,
Entertainment

Want to use a näıve Bayes classifier

Need to define a generative model
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Text classification

Classify text documents using topics

Useful for automatic segregation of newsfeeds, other internet content

Training data has a unique topic label per document — e.g., Sports, Politics,
Entertainment

Want to use a näıve Bayes classifier

Need to define a generative model

How do we represent documents?
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Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}
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Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}

Topics come from a set C = {c1, c2, . . . , ck}

Madhavan Mukund Lecture 9: 21 February, 2022 DMML Jan–May 2022 14 / 19



Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}

Topics come from a set C = {c1, c2, . . . , ck}

Each topic c has probability Pr(c)
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Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}

Topics come from a set C = {c1, c2, . . . , ck}

Each topic c has probability Pr(c)

Each word wi ∈ V has conditional probability Pr(wi | cj) with respect to each
cj ∈ C
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Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}

Topics come from a set C = {c1, c2, . . . , ck}

Each topic c has probability Pr(c)

Each word wi ∈ V has conditional probability Pr(wi | cj) with respect to each
cj ∈ C

Generating a random document d

Choose a topic c with probability Pr(c)

For each w ∈ V , toss a coin, include w in d with probability Pr(w | c)
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Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}

Topics come from a set C = {c1, c2, . . . , ck}

Each topic c has probability Pr(c)

Each word wi ∈ V has conditional probability Pr(wi | cj) with respect to each
cj ∈ C

Generating a random document d

Choose a topic c with probability Pr(c)

For each w ∈ V , toss a coin, include w in d with probability Pr(w | c)

Pr(d | c) =
∏

wi∈D

Pr(wi | c)
∏

wi /∈D

(1− Pr(wi | c))
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Set of words model

Each document is a set of words over a vocabulary V = {w1,w2, . . . ,wm}

Topics come from a set C = {c1, c2, . . . , ck}

Each topic c has probability Pr(c)

Each word wi ∈ V has conditional probability Pr(wi | cj) with respect to each
cj ∈ C

Generating a random document d

Choose a topic c with probability Pr(c)

For each w ∈ V , toss a coin, include w in d with probability Pr(w | c)

Pr(d | c) =
∏

wi∈D

Pr(wi | c)
∏

wi /∈D

(1− Pr(wi | c))

Pr(d) =
∑

c∈C

Pr(d | c)
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Näıve Bayes classifier

Training set D = {d1, d2, . . . , dn}

Each di ⊆ V is assigned a unique label from C
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Näıve Bayes classifier

Training set D = {d1, d2, . . . , dn}

Each di ⊆ V is assigned a unique label from C

Pr(cj) is fraction of D labelled cj
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Näıve Bayes classifier

Training set D = {d1, d2, . . . , dn}

Each di ⊆ V is assigned a unique label from C

Pr(cj) is fraction of D labelled cj
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Näıve Bayes classifier

Training set D = {d1, d2, . . . , dn}

Each di ⊆ V is assigned a unique label from C

Pr(cj) is fraction of D labelled cj

Pr(wi | cj) is fraction of documents labelled cj in which wi appears

Given a new document d ⊆ V , we want to compute argmaxc Pr(c | d)

Madhavan Mukund Lecture 9: 21 February, 2022 DMML Jan–May 2022 15 / 19
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Pr(cj) is fraction of D labelled cj

Pr(wi | cj) is fraction of documents labelled cj in which wi appears

Given a new document d ⊆ V , we want to compute argmaxc Pr(c | d)

By Bayes’ rule, Pr(c | d) =
Pr(d | c)Pr(c)

Pr(d)
As usual, discard the common denominator and compute argmaxc Pr(d | c)Pr(c)
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Näıve Bayes classifier

Training set D = {d1, d2, . . . , dn}

Each di ⊆ V is assigned a unique label from C

Pr(cj) is fraction of D labelled cj

Pr(wi | cj) is fraction of documents labelled cj in which wi appears

Given a new document d ⊆ V , we want to compute argmaxc Pr(c | d)

By Bayes’ rule, Pr(c | d) =
Pr(d | c)Pr(c)

Pr(d)
As usual, discard the common denominator and compute argmaxc Pr(d | c)Pr(c)

Recall Pr(d | c) =
∏

wi∈D

Pr(wi | c)
∏

wi /∈D

(1− Pr(wi | c))
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Bag of words model

Each document is a multiset or bag of words over a vocabulary
V = {w1,w2, . . . ,wm}

Count multiplicities of each word
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Bag of words model

Each document is a multiset or bag of words over a vocabulary
V = {w1,w2, . . . ,wm}

Count multiplicities of each word

As before

Each topic c has probability Pr(c)

Each word wi ∈ V has conditional probability Pr(wi | cj) with respect to each
cj ∈ C

Note that

m
∑

i=1

Pr(wi | cj) = 1

Assume document length is independent of the class
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Bag of words model

Generating a random document d

Choose a document length ℓ with Pr(ℓ)

Choose a topic c with probability Pr(c)

Recall |V | = m.

To generate a single word, throw an m-sided die that displays w with probability
Pr(w | c)

Repeat ℓ times
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Bag of words model

Generating a random document d

Choose a document length ℓ with Pr(ℓ)

Choose a topic c with probability Pr(c)

Recall |V | = m.

To generate a single word, throw an m-sided die that displays w with probability
Pr(w | c)

Repeat ℓ times

Let nj be the number of occurrences of wj in d

Pr(d | c) = Pr(ℓ) ℓ!
m
∏

j=1

Pr(wj | c)
nj

nj !
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Parameter estimation

Training set D = {d1, d2, . . . , dn}

Each di is a multiset over V of size ℓi
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Parameter estimation

Training set D = {d1, d2, . . . , dn}

Each di is a multiset over V of size ℓi

As before, Pr(cj) is fraction of D labelled cj

Pr(wi | cj) — fraction of occurrences of wi over documents Dj ⊆ D labelled cj

nid — occurrences of wi in d

Pr(wi | cj) =

∑

d∈Dj

nid

m
∑

t=1

∑

d∈Dj

ntd
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Parameter estimation

Training set D = {d1, d2, . . . , dn}

Each di is a multiset over V of size ℓi

As before, Pr(cj) is fraction of D labelled cj

Pr(wi | cj) — fraction of occurrences of wi over documents Dj ⊆ D labelled cj

nid — occurrences of wi in d

Pr(wi | cj) =

∑

d∈Dj

nid

m
∑

t=1

∑

d∈Dj

ntd

=

∑

d∈D

nid Pr(cj | d)

m
∑

t=1

∑

d∈D

ntd Pr(cj | d)

,

since Pr(cj | d) =

{

1 if d ∈ Dj ,

0 otherwise
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Classification

Pr(c | d) =
Pr(d | c) Pr(c)

Pr(d)
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Want argmax
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As before, discard the denominator Pr(d)

Recall, Pr(d | c) = Pr(ℓ) ℓ!
m
∏
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Classification

Pr(c | d) =
Pr(d | c) Pr(c)

Pr(d)

Want argmax
c

Pr(c | d)

As before, discard the denominator Pr(d)

Recall, Pr(d | c) = Pr(ℓ) ℓ!
m
∏

j=1

Pr(wj | c)
nj

nj !
, where |d | = ℓ

Discard Pr(ℓ), ℓ! since they do not depend on c

Madhavan Mukund Lecture 9: 21 February, 2022 DMML Jan–May 2022 19 / 19



Classification

Pr(c | d) =
Pr(d | c) Pr(c)

Pr(d)

Want argmax
c

Pr(c | d)

As before, discard the denominator Pr(d)

Recall, Pr(d | c) = Pr(ℓ) ℓ!
m
∏

j=1

Pr(wj | c)
nj

nj !
, where |d | = ℓ

Discard Pr(ℓ), ℓ! since they do not depend on c

Compute argmax
c

Pr(c)

m
∏

j=1

Pr(wj | c)
nj

nj !
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