Lecture 9: 21 February, 2022

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–May 2022

Bayesian classifiers

As before

- Attributes $\{A_1, A_2, \ldots, A_k\}$ and
- Classes $C = \{c_1, c_2, \dots c_\ell\}$

3

→ < ∃→

- As before
 - Attributes $\{A_1, A_2, \ldots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class c_i defines a probabilistic model for attributes

$$Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i)$$

$$(a_1, -, a_k) \xrightarrow{-9} ?$$

- As before
 - Attributes $\{A_1, A_2, \ldots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class *c_i* defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k | C = c_i)$
- Given a data item $d = (a_1, a_2, \ldots, a_k)$, identify the best class c for d

э

- As before
 - Attributes $\{A_1, A_2, \ldots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots, c_\ell\}$
- Each class c_i defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, \ldots, A_k = a_k | C = c_i)$
- Given a data item d = (a₁, a₂,..., a_k), identify the best class c for d
 Maximize Pr(C = c_i | A₁ = a₁,..., A_k = a_k)

• To use probabilities, need to describe how data is randomly generated

Generative model

< □ > < 向

э

To use probabilities, need to describe how data is randomly generated

Generative model

Typically, assume a random instance is created as follows

- Choose a class c_j with probability $Pr(c_j)$
- Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

2 Pr(ci) =1

age, home. je 2 - 9/15-4 6/15-N • To use probabilities, need to describe how data is randomly generated

Generative model

- Typically, assume a random instance is created as follows
 - Choose a class c_j with probability $Pr(c_j)$
 - Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

Generative model has associated parameters $\theta = (\theta_1, \dots, \theta_m)$

- Each class probability $Pr(c_j)$ is a parameter
- Each conditional probability $Pr(a_1, \ldots, a_k \mid c_j)$ is a parameter

• To use probabilities, need to describe how data is randomly generated

Generative model

- Typically, assume a random instance is created as follows
 - Choose a class c_j with probability $Pr(c_j)$
 - Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

Generative model has associated parameters $\theta = (\theta_1, \dots, \theta_m)$

- Each class probability $Pr(c_j)$ is a parameter
- Each conditional probability $Pr(a_1, \ldots, a_k \mid c_j)$ is a parameter
- We need to estimate these parameters

• Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$

Madhavan Mukund

э

• Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$

Law of large numbers allows us to estimate probabilities by counting frequencies

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(heads)$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(heads)$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?
- Likelihood
 - Actual coin toss sequence is $\tau = t_1 t_2 \dots t_N$
 - Given an estimate of θ , compute $Pr(\tau \mid \theta)$ likelihood $L(\theta)$

 $P_r(\tau) = 1 - P_r(H)$

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(heads)$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?
- Likelihood
 - Actual coin toss sequence is $\tau = t_1 t_2 \dots t_N$
 - Given an estimate of θ , compute $Pr(\tau \mid \theta)$ likelihood $L(\theta)$
- $\hat{\theta} = H/N$ maximizes this likelihood $\arg \max_{\theta} L(\theta) = \hat{\theta} = H/N$
 - Maximum Likelihood Estimator (MLE)

DMML Jan–May 2022 5 / 19

イロト 不得 トイヨト イヨト 二日

• Maximize $Pr(C = c_i | A_1 = a_1, \ldots, A_k = a_k)$

By Bayes' rule,

Generaty model $\frac{Pr(c'_{3})}{Pr(a_{1}-a_{1}|c_{1})} = \frac{Pr}{2}$

$$Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$$

$$r(A_1 = a_1, \dots, A_k = a_k | C = c_i) \cdot Pr(C = c_i)$$

$$Pr(A_1 = a_1, \dots, A_k = a_k)$$

$$Pr(A_1 = a_1, \dots, A_k = a_k)$$

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< A

PCOLAN

• Maximize $Pr(C = c_i | A_1 = a_1, \ldots, A_k = a_k)$

By Bayes' rule,

$$Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$$

= $\frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, \dots, A_k = a_k)}$
= $\frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{\sum_{j=1}^{\ell} Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_j) \cdot Pr(C = c_j)}$

Madhavan Mukund

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Maximize
$$Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$$

By Bayes' rule,
 $Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$
 $= \frac{Pr(A_1 = a_1, \dots, A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, \dots, A_k = a_k)}$
 $= \frac{Pr(A_1 = a_1, \dots, A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{\sum_{i=1}^{\ell} Pr(A_1 = a_1, \dots, A_k = a_k | C = c_i) \cdot Pr(C = c_i)}$

Denominator is the same for all c_i , so sufficient to maximize

$$Pr(A_1 = a_1, \ldots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

э

• To classify
$$A = g, B = q$$

DMML Jan-May 2022 6 / 19

人口 医水理 医水管 医水管 医小管

• To classify
$$A = g, B = q$$

•
$$Pr(C = t) = 5/10 = 1/2$$

• $Pr(A = g, B = q$ $C = t) = 2/5$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

A	В	С
m	b	t
т	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

- Pr(C = f) = 5/10 = 1/2
- Pr(A = g, B = q | C = f) = 1/5

- 34

▶ < ∃ ▶</p>

• To classify $A = g, B = q$			
	A	В	С
Pr(C = t) = 5/10 = 1/2	m	b	t
Pr $(A = g, B = g C = t) = 2/5$	m	S	t
	g	q	t
• $Pr(A = g, B = q C = t) \cdot Pr(C = t) = 1/5$	h	S	t
	g	q	t
• $Pr(C = f) = 5/10 = 1/2$	g	q	f
	g	5	f
• $Pr(A = g, B = q C = f) = 1/5$	h	Ь	f
• $Pr(A = g, B = g C = f) \cdot Pr(C = f) = 1/10$	h	q	f
	m	b	f

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

- Pr(C = f) = 5/10 = 1/2
- Pr(A = g, B = q | C = f) = 1/5
- $Pr(A = g, B = q | C = f) \cdot Pr(C = f) = 1/10$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

• Hence, predict C = t

• What if we want to classify A = m, B = q?

イロト 不得下 イヨト イヨト

Example ...

• What if we want to classify A = m, B = q?

• Pr(A = m, B = q | C = t) = 0

A	В	С
т	b	t
т	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example . . .

- What if we want to classify A = m, B = q?
- Pr(A = m, B = q | C = t) = 0
- Also Pr(A = m, B = q | C = f) = 0!

A	В	С
т	b	t
т	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
т	b	f

3

▶ < ∃ ▶</p>

-

Example ...

- What if we want to classify A = m, B = q?
- Pr(A = m, B = q | C = t) = 0
- Also Pr(A = m, B = q | C = f) = 0!
- To estimate joint probabilities across all combinations of attributes, we need a much larger set of training data

 $\frac{Pr(A|c) \cdot Pr(c)}{0 \leftarrow Pr(A)}$ Pr(A|t) Pr(t) + Pr(A|t) Pr(f)

A	В	С
m	b	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

Naïve Bayes classifier

• Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) = \prod_{j=1}^k Pr(A_j = a_j | C = c_i)$$

• $Pr(C = c_i)$ is fraction of training data with class c_i

• $Pr(A_j = a_j | C = c_i)$ is fraction of training data labelled c_i for which $A_j = a_j$

Naïve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) = \prod_{j=1}^k Pr(A_j = a_j | C = c_i)$$

• $Pr(C = c_i)$ is fraction of training data with class c_i

•
$$Pr(A_j = a_j | C = c_i)$$
 is fraction of training data labelled c_i for which $A_j = a_j$

Final classification is

$$\arg\max_{c_i} Pr(C = c_i) \prod_{j=1}^k Pr(A_j = a_j | C = c_i)$$

$$\Pr(A_j = a_1, - -A_k - a_k) - I(C = c_i)$$

Conditional independence is not theoretically justified

э

Naïve Bayes classifier ...

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering
- However, naive Bayes classifiers work well in practice, even for text classification!
 - Many spam filters are built using this model

Example revisited

• Want to classify A = m, B = q

•
$$Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0$$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	\boldsymbol{q}	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

3

 $\langle \Box \rangle \langle \Box \rangle$

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5

A	В	С	
m	b	t	
т	S	t	
g	q	t	
h	S	t	
g	\boldsymbol{q}	t	
g	q	f	
g	5	f	
h	Ь	f	
h	9	f	
m	b	f	
Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5

$$Pr(B = q | C = f) = 2/5$$

$$Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

< A

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5
- $Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$
- $Pr(A = m | C = f) \cdot Pr(B = q | C = f) \cdot Pr(C = f) = 1/25$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
p	b	f

P(m.g.)

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5
- $Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$
- $Pr(A = m | C = f) \cdot Pr(B = q | C = f) \cdot Pr(C = f) = 1/25$

Hence	predict	C =

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
m	b	f

• Suppose A = a never occurs in the test set with C = c

3

イロト 不得下 イヨト イヨト

Zero counts

• Suppose A = a never occurs in the test set with C = c

• Setting
$$Pr(A = a | C = c) = 0$$
 wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i | C = c)$

in which this term appears

3

イロト イヨト イヨト

Zero counts

• Suppose
$$A = a$$
 never occurs in the test set with $C = c$

• Setting Pr(A = a | C = c) = 0 wipes out any product $\prod_{i=1} Pr(A_i = a_i | C = c)$

in which this term appears

• Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$

Zero counts

• Suppose A = a never occurs in the test set with C = c

• Setting $Pr(A = a \mid C = c) = 0$ wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i \mid C = c)$ in which this term appears

```
• Assume A_i takes m_i values \{a_{i1}, \ldots, a_{im_i}\}
```

"Pad" training data with one sample for each value a_i — m; extra data items

• Suppose A = a never occurs in the test set with C = c

• Setting
$$Pr(A = a | C = c) = 0$$
 wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i | C = c)$

in which this term appears

- Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$
- "Pad" training data with one sample for each value $a_j m_i$ extra data items

• Adjust $Pr(A_i = a_i | C = c_j)$ to $\frac{n_{ij} + 1}{n_j + m_i}$ where • n_{ii} is number of samples with $A_i = a_i$, $C = c_i$

• n_i is number of samples with $C = c_i$

3

Smoothing

• Laplace's law of succession $Pr(A_i = a_i | C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$

12/19

Madhavan Mukund

Lecture 9: 21 February, 2022

Smoothing

Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

More generally, Lidstone's law of succession, or smoothing

$$\Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + \lambda}{n_j + \lambda m_i} \qquad \qquad \lambda = 1 \implies \text{laplace}$$

Smoothing

Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

More generally, Lidstone's law of succession, or smoothing

$$Pr(A_i = a_i \mid C = c_j) = rac{n_{ij} + \lambda}{n_j + \lambda m_i}$$

• $\lambda = 1$ is Laplace's law of succession

Classify text documents using topics

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model
- How do we represent documents?

• Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$

3

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$

3

N 4 1 N

< □ > < 向

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

$$Pr(d \mid c) = \Pr(w_i \mid c) \prod_{w_i \notin D} (1 - Pr(w_i \mid c))$$

$$\Pr(c) d$$

2 IIP(ai)c)

Pr(Alc)

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

•
$$Pr(d \mid c) = \prod_{w_i \in D} Pr(w_i \mid c) \prod_{w_i \notin D} (1 - Pr(w_i \mid c))$$

$$\Pr(d) = \sum_{c \in C} \Pr(d \mid c)$$

- Training set $D = \{d_1, d_2, \ldots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C

э

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

• $Pr(c_j)$ is fraction of D labelled c_j

э

▶ < ∃ ▶</p>

< A

- Training set $D = \{d_1, d_2, \ldots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_i)$ is fraction of D labelled c_i
- $Pr(w_i \mid c_i)$ is fraction of documents labelled c_i in which w_i appears

3

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_{c} Pr(c \mid d)$

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

- $Pr(c_j)$ is fraction of *D* labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_c Pr(c \mid d)$
- By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$

• As usual, discard the common denominator and compute $\arg \max_{c} Pr(d \mid c)Pr(c)$

• Training set $D = \{d_1, d_2, \dots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

• $Pr(c_i)$ is fraction of D labelled $c_j \prec$

 $\Pr(w_i \mid c_j)$ is fraction of documents labelled c_j in which w_i appears

Given a new document $d \subseteq V$, we want to compute $\arg \max_c Pr(c \mid d)$

By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$

As usual, discard the common denominator and compute $\arg \max_{c} Pr(d \mid c) Pr(c)$

• Recall
$$Pr(d \mid c) = \prod_{w_i \in U} Pr(w_i \mid c) \prod_{w_i \notin U} (1 - Pr(w_i \mid c))$$

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
 - Count multiplicities of each word

Set: X -> Eo,ik zex → 0 z¢s Mulbert X -> No

- Each document is a multiset or bag of words over a vocabulary
 V = {w₁, w₂, ..., w_m}
 - Count multiplicities of each word
- As before
 - Each topic c has probability Pr(c)
 - Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$ with respect to each $c_j \in C$
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$

Assume document length is independent of the class

- Generating a random document d
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.

- **To generate a single word, throw an** m-sided die that displays w with probability $Pr(w \mid c)$
- **Repeat** ℓ times

- Generating a random document *d*
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an *m*-sided die that displays *w* with probability $Pr(w \mid c)$
 - Repeat ℓ times

• Let n_i be the number of occurrences of w_i in d

- Generating a random document *d*
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an *m*-sided die that displays *w* with probability $Pr(w \mid c)$
 - Repeat ℓ times
- Let n_j be the number of occurrences of w_j in d

•
$$Pr(d \mid c) = Pr(\ell) \ \ell! \ \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$

3

- A 12

Parameter estimation

- Training set $D = \{d_1, d_2, \ldots, d_n\}$
 - Each d_i is a multiset over V of size ℓ_i

3

▶ ∢ ⊒
Parameter estimation

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each d_i is a multiset over V of size ℓ_i

• As before, $Pr(c_j)$ is fraction of D labelled c_j

э

Parameter estimation

Parameter estimation

• Training set $D = \{d_1, d_2, \dots, d_n\}$

• Each d_i is a multiset over V of size ℓ_i

• As before, $Pr(c_j)$ is fraction of D labelled c_j

• $Pr(w_i | c_j)$ — fraction of occurrences of w_i over documents $D_j \subseteq D$ labelled c_j

• n_{id} — occurrences of w_i in d

•
$$Pr(w_i \mid c_j) = \frac{\sum_{d \in D_j} n_{id}}{\sum_{t=1}^{m} \sum_{d \in D_j} n_{td}} = \frac{\sum_{d \in D} n_{id} Pr(c_j \mid d)}{\sum_{t=1}^{m} \sum_{d \in D} n_{ti} Pr(c_j \mid d)}$$

since $Pr(c_j \mid d) = \begin{cases} 1 & \text{if } d \in D_j, \\ 0 & \text{otherwise} \end{cases}$

э

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

3

イロト 不得 トイヨト イヨト

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

• Want $\underset{c}{\operatorname{arg max}} Pr(c \mid d)$

3

イロト 不得 トイヨト イヨト

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

э

< E

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

• Recall,
$$Pr(d \mid c) = Pr(\ell) \ \ell! \ \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

э

< E

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

Recall,
$$Pr(d \circ q) = Pr(\ell) \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$
Discard $Pr(\ell), \ell!$ since they do not depend on c

э

< E

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

• Recall,
$$Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

Discard $Pr(\ell), \ell!$ since they do not depend on c

• Compute
$$\arg\max_{c} Pr(c) \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$

э