Lecture 21: 18 April, 2022

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- Joint probabilities $P\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- 2^{n} combinations of $x_{1}, x_{2}, \ldots, x_{n}$
- $2^{n}-1$ parameters

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- Joint probabilities $P\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- 2^{n} combinations of $x_{1}, x_{2}, \ldots, x_{n}$
- $2^{n}-1$ parameters

■ Naïve Bayes assumption - complete independence

- $P\left(x_{i}=1\right)$ for each x_{i}
- n parameters

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- Joint probabilities $P\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- 2^{n} combinations of $x_{1}, x_{2}, \ldots, x_{n}$
- $2^{n}-1$ parameters
- Naïve Bayes assumption - complete independence
- $P\left(x_{i}=1\right)$ for each x_{i}
- n parameters

■ Can we strive for something in between?

- "Local" dependencies between some variables

Probabilistic graphical models

- Judea Pearl [Turing Award 2011]
- Represent local dependencies using directed graph

Probabilistic graphical models

■ Judea Pearl [Turing Award 2011]
■ Represent local dependencies using directed graph

■ Example: Burglar alarm

- Pearl's house has a burglar alarm
- Neighbours John and Mary call if they hear the alarm
- John is prone to mistaking ambulances etc for the alarm
- Mary listens to loud music and sometimes fails to hear the alarm
- The alarm may also be triggered by an earthquake (California!)

Probabilistic graphical models

- Each node has a local (conditional) probability table

Probabilistic graphical models

- Each node has a local (conditional) probability table

■ Fundamental assumption:
A node is conditionally independent of non-descendants, given its parents

Probabilistic graphical models

- Each node has a local (conditional) probability table
- Fundamental assumption: A node is conditionally independent of non-descendants, given its parents
- Graph is a DAG, no cyclic dependencies

Student example

- Example due to Nir Friedman and Daphne Koller
- Student asks teacher for a reference letter
- Teacher has forgotten the student, so letter is entirely based on student's grade in the course

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?

- $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

■ Bayes Rule: $P(A, B)=P(A \mid B) P(B)$

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

■ Bayes Rule: $P(A, B)=P(A \mid B) P(B)$

- $P\left(x_{1} \mid, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2}, x_{3}, \ldots, x_{n}\right)$

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

■ Bayes Rule: $P(A, B)=P(A \mid B) P(B)$
■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2}, x_{3}, \ldots, x_{n}\right)$

- Applied recursively, this gives us the chain rule

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)
$$

Evaluating a network

■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \ldots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$

Evaluating a network

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$

■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$

Evaluating a network

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
- Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$
- Use topological ordering in a Bayesian network

DAG must have a node ritz no Suppose non- incoming (outgoing) edges Suppose nor-

$$
V_{n-1}
$$

Evaluating a network

■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$
■ Use topological ordering in a Bayesian network

- $P(m, j, a, b, e)=$ $P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e P(b \mid e) P(e)$

Evaluating a network

■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$
■ Use topological ordering in a Bayesian network

- $P(m, j, a, b, e)=$
$P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e) P(b \mid e) P(e)$
$=\overline{P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)}$

Evaluating a network

Evaluating a network

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
- Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$
- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e)=$
$P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e) P(b \mid e) P(e)$
$=P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$
- $P(m, j, b)=$
$\sum_{a=0}^{1} \sum_{e=0}^{1} P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$
$P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(m \mid a) P(j \mid a) P(a \mid b, e)$

Evaluation tree

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

■ Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

■ Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network

- Ordering MaryCalls, JohnCalls, Earthquake, Burglary, Alarm is even worse

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

■ Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network

- Ordering MaryCalls, JohnCalls, Earthquake, Burglary, Alarm is even worse
- Causal model (causes to effects) works better than diagnostic model (effects to causes)

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

Complexity of exact inference

- Exact inference of Bayesian networks is NP-complete
- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

A literal ℓ_{i} is either x_{i} or x_{i} not ($\left.x_{i}\right)$

Complexity of exact inference

- Exact inference of Bayesian networks is NP-complete
- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- A literal ℓ_{i} is either x_{i} or $\neg x_{i}$
- A clause is a disjunction of literals, $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$

$$
x_{3} \vee 7 x_{7} \vee x_{9} \vee x_{11}
$$

Complexity of exact inference

- Exact inference of Bayesian networks is NP-complete

■ Boolean formula in Conjunctive Normal Form (CNF)

- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- A literal ℓ_{i} is either x_{i} or $\neg x_{i}$
- A clause is a disjunction of literals, $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses, $C_{1} \wedge C_{2} \wedge \cdots \vee C_{m}$

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- A literal ℓ_{i} is either x_{i} or $\neg x_{i}$
- A clause is a disjunction of literals, $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses, $C_{1} \wedge C_{2} \wedge \cdots \vee C_{m}$

■ SAT - given a formula in CNF, is there an assignment to variables that makes the formula true?

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- A literal ℓ_{i} is either x_{i} or $\neg x_{i}$
- A clause is a disjunction of literals, $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses, $C_{1} \wedge C_{2} \wedge \cdots \vee C_{m}$

■ SAT - given a formula in CNF, is there an assignment to variables that makes the formula true?

- 3-SAT - SAT where each clause has exactly 3 literals

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- A literal ℓ_{i} is either x_{i} or $\neg x_{i}$
- A clause is a disjunction of literals, $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses, $C_{1} \wedge C_{2} \wedge \cdots \vee C_{m}$

■ SAT - given a formula in CNF, is there an assignment to variables that makes the formula true?

- 3-SAT - SAT where each clause has exactly 3 literals
- Both SAT and 3-SAT are NP-complete

■ No known efficient algorithm - try all possible valuations

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- A literal ℓ_{i} is either x_{i} or $\neg x_{i}$
- A clause is a disjunction of literals, $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses, $C_{1} \wedge C_{2} \wedge \cdots \vee C_{m}$

■ SAT - given a formula in CNF, is there an assignment to variables that makes the formula true?

- 3-SAT - SAT where each clause has exactly 3 literals
- Both SAT and 3-SAT are NP-complete

■ No known efficient algorithm - try all possible valuations

Soluhen t iuplus Solution

Transforming 3-CNF to Bayesiam network inference Vavalles $x_{1}, x_{2}, \ldots, x_{n}$

Clance $l_{1} \vee l_{2} \vee l_{3}$

$c_{1} \wedge c_{2} \ldots c_{m}$

