Lecture 7: 14 February, 2022

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

Linear regression

■ Find the line that "fits" the data best

■ Normal equation
■ Gradient descent

- Linear: each parameter's contribution is independent

■ Input x : $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
■ $y=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}$

The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic

■ Non-linear: cross dependencies

■ Input $x_{i}:\left(x_{i_{1}}, x_{i_{2}}\right)$

- Quadratic dependencies:

$$
y=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}+\theta_{11} x_{i_{1}}^{2}+\theta_{22} x_{i_{2}}^{2}+\theta_{12} x_{i_{1}} x_{i_{2}}
$$

Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE
- As degree increases, features explode exponentially

Overfitting

- Need to be careful about adding higher degree terms
- For n training points,can always fit polynomial of degree $(n-1)$ exactly

■ However, such a curve would not generalize well to new data points

■ Overfitting — model fits training data well, performs poorly on unseen data

Regularization

$$
\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-y_{i}\right)^{2}+\sum_{j=1}^{k} \theta_{j}^{2}
$$

- Second term penalizes curve complexity
- Variations on regularatization
- Ridge regression: $\sum_{j=1}^{k} \theta_{j}^{2}$
- LASSO regression: $\sum_{j=1}^{k}\left|\theta_{j}\right|$

- Elastic net regression: $\sum_{j=1}^{k} \lambda_{1}\left|\theta_{j}\right|+\lambda_{2} \theta_{j}^{2}$

The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable

The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable
- Take log of GDP
- Regression we are computing is
$y=\theta_{0}+\theta_{1} \log x_{1}$

The non-polynomial case

- Reverse the relationship
- Plot per capita GDP in terms of percentage of urbanization
- Now we take log of the output variable $\log y=\theta_{0}+\theta_{1} x_{1}$
- Log-linear transformation

■ Earlier was linear-log

- Can also use log-log

Regression for classification

- Regression line
- Set a threshold

■ Classifier

- Output below threshold : 0 (No)
- Output above threshold : 1 (Yes)

Regression for classification

- Regression line
- Set a threshold
- Classifier
- Output below threshold: 0 (No)
- Output above threshold : 1 (Yes)
- Classifier output is a step function

Loss per input is O~1

$$
\left(x^{\top} \theta-y\right)^{2}
$$

Smoothen the step

Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Input z is output of our regression

$$
\sigma(z)=\frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)}}
$$

Smoothen the step

- Sigmoid function

$$
\begin{aligned}
& \sigma(z)=\frac{1}{1+e^{-z}} \quad \frac{1}{1+e^{0}}=\frac{1}{2} \\
& z \text { is output of our } \\
& \text { sion } \\
& 1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)} \\
& \text { parameters to fix } \\
& \text { ntal position and steepness } \\
& -6 \\
& \hline \text { Uncertanty }
\end{aligned}
$$

Logistic regression

■ Compute the coefficients?

- Solve by gradient descent

Logistic regression

■ Compute the coefficients?

- Solve by gradient descent $O(2)=\frac{1}{1+e^{-2}}$

■ Need derivatives to exist

- Hence smooth sigmoid, not step function
- $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$

Logistic regression

■ Compute the coefficients?

- Solve by gradient descent
- Need derivatives to exist
- Hence smooth sigmoid, not step function
- $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Need a cost function to minimize

Loss function for logistic regression

■ Goal is to maximize log likelihood

Loss function for logistic regression

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

Fixed θ
Fixes $\frac{1}{1+e^{-x^{\top} \theta}}$

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$
- Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$
- Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$
- Minimize cross entropy: $-\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}-\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i_{j}}
\end{aligned}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } \underbrace{z_{i}=\theta_{0}^{-}}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i j}
\end{aligned}
$$

■ $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \beta}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$

MSE for logistic regression and gradient descent ...

\square For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$

- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(\boldsymbol{z}_{i}\right)$

MSE for logistic regression and gradient descent ...

- For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{j}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$
- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$
- Ideally, gradient descent should take large steps when $\sigma(z)-y$ is large

MSE for logistic regression and gradient descent ...

- For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{j}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$
- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$
- Ideally, gradient descent should take large steps when $\sigma(z)-y$ is large
- $\sigma(z)$ is flat at both extremes
- If $\sigma(z)$ is completely wrong, $\sigma(z) \approx(1-y)$, we still have $\sigma^{\prime}(z) \approx 0$
- Learning is slow even when current model is far from optimal

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}}$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}}
\end{aligned}
$$

Cross entropy and gradient descent

■ $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}}$

$$
=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}}
$$

$$
=-\frac{\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right]}{\text { dy/unt }}{ }_{\text {same }}^{\sigma^{\prime}(z) x_{j}}
$$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \sigma^{\prime}(z) x_{j} \\
& =-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}
\end{aligned}
$$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
=-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j}
$$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$
- Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$
- Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$
- The greater the error, the faster the learning rate

Decision trees for regression

- How do we use decision trees for regression?

Decision trees for regression

■ How do we use decision trees for regression?

- Partition the input into intervals

Decision trees for regression

- How do we use decision trees for regression?
- Partition the input into intervals
- For each interval, predict mean value of output, instead of majority class

Decision trees for regression

- How do we use decision trees for regression?
- Partition the input into intervals
- For each interval, predict mean value of output, instead of majority class
- Regression tree

Decision trees for regression

- Regression tree for noisy quadratic centered around $x_{1}=0.5$

Decision trees for regression

- Regression tree for noisy quadratic centered around $x_{1}=0.5$
- For each node, the output is the mean y value for the current set of points

Decision trees for regression

- Regression tree for noisy quadratic centered around $x_{1}=0.5$
- For each node, the output is the mean y value for the current set of points
- Instead of impurity, use mean squared error (MSE) as cost function

Decision trees for regression

- Regression tree for noisy quadratic centered around

$$
x_{1}=0.5
$$

- For each node, the output is the mean y value for the current set of points
- Instead of impurity, use mean squared error (MSE) as cost function
- Choose a split that minimizes MSE

Regression trees

- Approximation using regression tree

Regression trees

- Extend the regression tree one more level to get a finer approximation

Regression trees

- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop

Regression trees

- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop
- Classification and Regression Trees (CART)

Regression trees

- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop
- Classification and Regression Trees (CART)
- Combined algorithm for both use cases

Regression trees

- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop
- Classification and Regression Trees (CART)
- Combined algorithm for both use cases
- Programming libraries typically provide CART implementation

