# Lecture 18: 04 April, 2022 

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-May 2022

## Soft margin optimization

Minimize $\frac{\|w\|}{2}+\sum_{i=1}^{N} \xi_{i}^{2}$
Subject to

$$
\begin{array}{ll}
\xi_{i} \geq 0 & \\
\langle w \cdot x\rangle+b>1-\xi_{i}, & \text { if } y_{i}=1 \\
\langle w \cdot x\rangle+b<-1+\xi_{i}, & \text { if } y_{i}=-1
\end{array}
$$

- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic



## The non-linear case

- How do we deal with datasets where the separator is a complex shape?
- Geometrically transform the data
- Typically, add dimensions
- For instance, if we can "lift" one class, we can find a planar separator between levels



## Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^{2}+y^{2}=1$
- Points inside the circle $x^{2}+y^{2}<1$
- Points outside circle $x^{2}+y^{2}>1$
- Transformation

$$
\varphi:(x, y) \mapsto\left(x, y\left(x^{2}+y^{2}\right)\right)
$$

- Points inside circle lie below $z=1$
- Point outside circle lifted above $z=1$


## $c^{112 i} 0 \infty$



SVM after transformation

- SVM in original space
unknown input to classify

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left\langle x_{i} \cdot z\right\rangle+b\right]
$$

- After transformation

$$
\operatorname{sign}\left[\sum_{i \in s v^{\prime}} y_{i} \alpha_{i}\left\langle\varphi\left(x_{i}\right) \cdot \varphi(z)\right\rangle+b\right]
$$



- All we need to know is how to compute dot products in transformed space

Dot products

$$
\varphi(z)=\left(\sqrt{1}, \sqrt{2} z_{1}, \sqrt{2} z_{2}, z_{i}^{2}, \sqrt{2} z_{1}, z_{2},\right.
$$

- Consider the transformation

$$
\varphi:\left(x_{1}, x_{2}\right) \mapsto\left(1, \frac{\sqrt{2} x_{1}}{\mathbf{2}} \frac{\sqrt{2} x_{2}}{6}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

$$
\begin{aligned}
& \text { - Dot product in transformed space }
\end{aligned}
$$

$$
\begin{aligned}
& z=\left\langle z_{1}, z_{2}\right\rangle \quad=\left(1+x_{1} z_{1}+x_{2} z_{2}\right) \\
& \text { - Transformed dot product can be } \\
& \text { expressed in terms of original inputs } \\
& \langle\varphi(x) \cdot \varphi(z)\rangle \\
& \text { in terms } \\
& \langle\varphi(x) \cdot \varphi(z)\rangle=K(x, z)=\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

## Kernels

- $K$ is a kernel for transformation $\varphi$ if

$$
K(x, z)=\langle\varphi(x) \cdot \varphi(z)\rangle
$$

- If we have a kernel, we don't need to explicitly compute transformed points
- All dot products can be computed implicitly using the kernel on original data points

$$
\operatorname{sign}[\sum_{i \in s v^{\prime}} y_{i} \alpha_{i}\langle\underbrace{\left.\varphi\left(x_{i}\right) \cdot \varphi(z)\right\rangle}_{\mathbf{K}(\boldsymbol{x}, \mathbf{2})}+b]
$$

## Kernels

- $K$ is a kernel for transformation $\varphi$ if

$$
K(x, z)=\langle\varphi(x) \cdot \varphi(z)\rangle
$$

- If we have a kernel, we don't need to explicitly compute transformed points
- All dot products can be computed implicitly using the kernel on original data points



## Kernels

- If we know $K$ is a kernel for some transformation $\varphi$, we can blindly use $K$ without even knowing what $\varphi$ looks like!
- When is a function a valid kernel?
- Has been studied in mathematics Mercer's Theorem
- Criteria are non-constructive
- Can define sufficient conditions from linear algebra


$$
\begin{aligned}
& x \mapsto \varphi(x) \\
& z \longmapsto \varphi(z)
\end{aligned}
$$

$Q(x) \cdot \varphi(z)$ function

- Kernel over training data $x_{1}, x_{2}, \ldots, x_{N}$ can be represented as a gram matrix

$$
K=\begin{aligned}
& x_{1} \\
& x_{2} \\
& \vdots \\
& x_{n}
\end{aligned} l^{x_{1}} x_{2}
$$

- Entries are values $K\left(x_{i}, x_{j}\right)$
- Gram matrix should be positive semidefinite for all $x_{1}, x_{2}, \ldots, x_{N}$

Known kernels

- Fortunately, there are many known kernels
- Polynomial kernels

$$
K(x, z)=(1+\langle x \cdot z\rangle)^{k}
$$

- Any $K(x, z)$ representing a similarity measure
- Gaussian radial basisfunction - Theoreheally, infinte dimensinade similarity based on inverse exponential distance

$$
K(x, z)=e^{-c|x-z|^{2}} \quad|x-2|
$$

SUM + Kernels
Disediantge: Manually discover good kernels
Advontege: Good kemues unk "very well" Best know models tell $\approx 2010$

Modern times
Neural methoiks have taken over "Find a kennel" is done automatically

