Lecture 12: 3 March, 2022

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–May 2022

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent + boosting

Gradient Boosting for Regression

- Training data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

3/11

Madhavan Mukund Lecture 12: 3 March, 2022

Gradient Boosting for Regression

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model *F* we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $y_i - [F(x_i) + h(x_i)]$
- Why should this work?

Gradient descent

 Move parameters against the gradient with respect to loss function

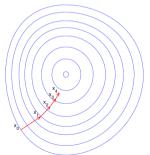
$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

5/11

Madhavan Mukund Lecture 12: 3 March, 2022

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree h to negative gradients $-g(x_i)$
- Update F to $F + \rho h$
- ρ is the learning rate

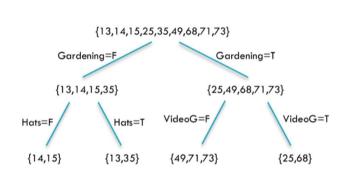
5/11

■ Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

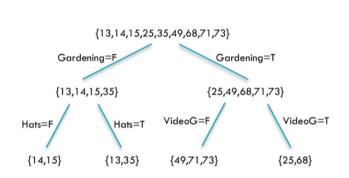
- Predict age based on given attributes
- Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE



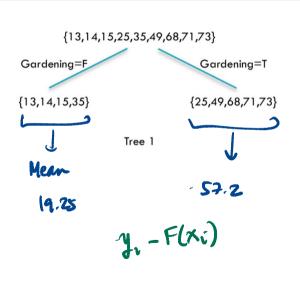
■ LikesHats seems irrelevant, yet pops up

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

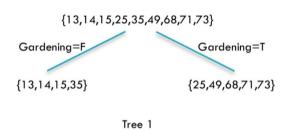


- LikesHats seems irrelevant, yet pops up
- Can we do better?

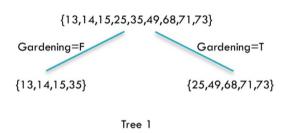
Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE



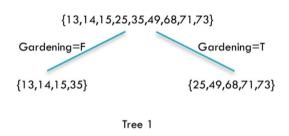
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68 -	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8



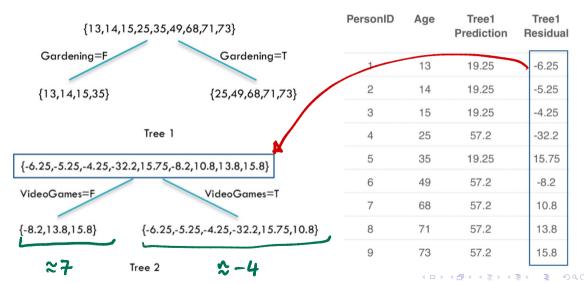
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8



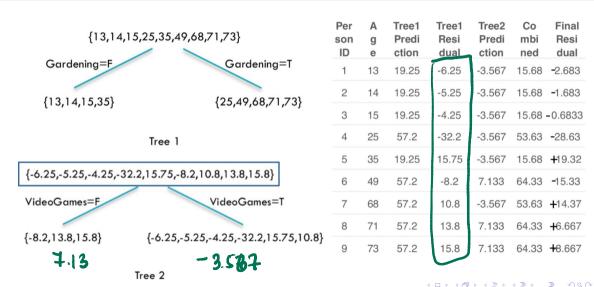
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8



PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8



8/11



Madhavan Mukund Lecture 12: 3 March, 2022 DMML Jan-May 2022

,	5,25,35,49,68,71,73}	Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
(10,14,10,00)	{10,14,15,55}		15	19.25	-4.25	-3.567	15.68	0.6833
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
()		8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

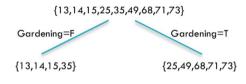
				FOXC		h(xi)		
	(,25,35,49,68,71,73)	Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
((,,,	3	15	19.25	-4.25	-3.567	15.68 -	0.6833
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	- 28.63
(/ 05 505 405 00	21575 22122122152	5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-0.25,-5.25,-4.25,-32.	2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	8	71	57.2	13.8	7.133	64.33	+ 6.667
{-0.2,13.0,13.8}	{-0.23,-3.23,-4.23,-32.2,13./3,10.6}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

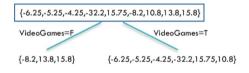
	5,25,35,49,68,71,73}	Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
(,,)	(20) / 50 / / 5)	3	15	19.25	-4.25	-3.567	15.68 -	0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	-28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

9/11



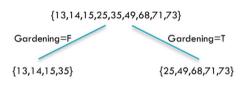
Tree 1



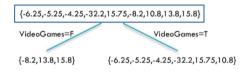
Tree 2

General Strategy

■ Build tree 1, F₁



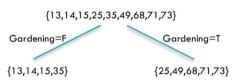
Tree 1



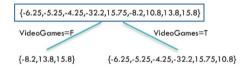
Tree 2

General Strategy

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$



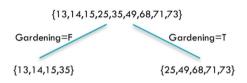
Tree 1



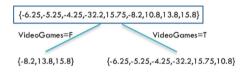
Tree 2

10 / 11

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$

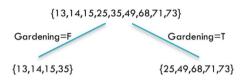


Tree 1

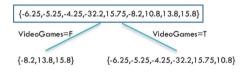


Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$

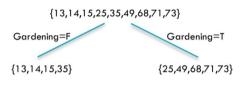


Tree 1

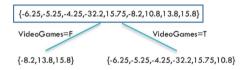


Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$
-

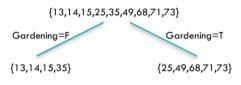


Tree 1



Tree 2

Learning Rate

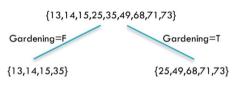


Tree 1

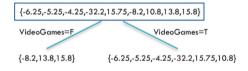
Tree 2

Learning Rate

 \blacksquare h_j fits residuals of F_j



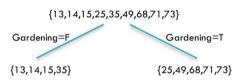
Tree 1



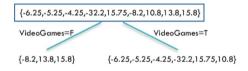
Tree 2

Learning Rate

- \blacksquare h_j fits residuals of F_j
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - LR controls contribution of residual
 - \blacksquare *LR* = 1 in our previous example



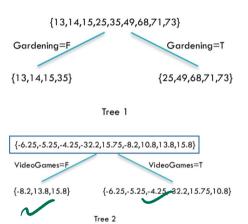
Tree 1



Tree 2

Learning Rate

- \bullet h_j fits residuals of F_j
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - *LR* controls contribution of residual
 - \blacksquare *LR* = 1 in our previous example
- Ideally, choose LR separately for each residual to minimize loss function
 - Can apply different LR to different leaves



11 / 11

Assume binary classification

Madhavan Mukund Lecture 12: 3 March, 2022 DMML Jan-May 2022 12 / 11

- Assume binary classification
- lacksquare Original training outputs are $y \in \{0,1\}$

Madhavan Mukund Lecture 12: 3 March, 2022 DMML Jan-May 2022 12 / 11

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$

Madhavan Mukund Lecture 12: 3 March, 2022 DMML Jan-May 2022 12 / 11

- Assume binary classification
- lacksquare Original training outputs are $y \in \{0,1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

1 MASS

$$\frac{S_0}{C_1} + \frac{S_1}{S_0}$$

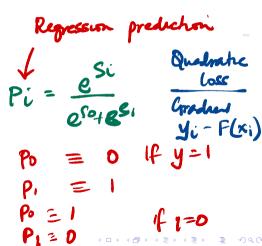
12 / 11

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$



12 / 11

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

Compute negative gradients

12 / 11

Madhayan Mukund Lecture 12: 3 March, 2022

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

- Compute negative gradients
- Fit regression trees to negative gradients to minimize cross entropy

12/11

Madhavan Mukund Lecture 12: 3 March, 2022 DMML Jan-May 2022