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For several decades, statisticians have advocated using a combination of labeled and
unlabeled data to train classifiers by estimating parameters of a generative model
through iterative expectation-maximization (EM) techniques. This chapter explores
the effectiveness of this approach when applied to the domain of text classification.
Text documents are represented here with a bag-of-words model, which leads to
a generative classification model based on a mixture of multinomials. This model
is an extremely simplistic representation of the complexities of written text. This
chapter explains and illustrates three key points about semi-supervised learning
for text classification with generative models. First, despite the simplistic repre-
sentation, some text domains have a high positive correlation between generative
model probability and classification accuracy. In these domains, a straightforward
application of EM with the naive Bayes text model works well. Second, some text
domains do not have this correlation. Here we can adopt a more expressive and ap-
propriate generative model that does have a positive correlation. In these domains,
semi-supervised learning again improves classification accuracy. Finally, EM suffers
from the problem of local maxima, especially in high-dimension domains such as
text classification. We demonstrate that deterministic annealing, a variant of EM,
can help overcome the problem of local maxima and increase classification accuracy
further when the generative model is appropriate.

3.1 Introduction

The idea of learning classifiers from a combination of labeled and unlabeled data
is an old one in the statistics community. At least as early as 1968, it was
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suggested that labeled and unlabeled data could be combined to build classifiers
with likelihood maximization by testing all possible class assignments (Hartley
and Rao, 1968). The seminal paper by Day (1969) presents an iterative EM-like
approach for parameters of a mixture of two normals with known covariances
from unlabeled data alone. Similar iterative algorithms for building maximum-
likelihood classifiers from labeled and unlabeled data with an explicit generative
model followed, primarily for mixtures of normal distributions (McLachlan, 1975;
Titterington, 1976).

Dempster et al. (1977) presented the theory of the EM framework, bringing to-
gether and formalizing many of the commonalities of previously suggested iterative
techniques for likelihood maximization with missing data. Its applicability to es-
timating maximum likelihood (or maximum a posteriori) parameters for mixture
models from labeled and unlabeled data (Murray and Titterington, 1978) and then
using this for classification (Little, 1977) was recognized immediately. Since then,
this approach continues to be used and studied (McLachlan and Ganesalingam,
1982; Ganesalingam, 1989; Shahshahani and Landgrebe, 1994). Using likelihood
maximization of mixture models for combining labeled and unlabeled data for clas-
sification has more recently made its way to the machine learning community (Miller
and Uyar, 1996; Nigam et al., 1998; Baluja, 1999).

The theoretical basis for expectation-maximization shows that with sufficiently
large amounts of unlabeled data generated by the model class in question, a more
probable model can be found than if using just the labeled data alone. If the
classification task is to predict the latent variable of the generative model, then
with sufficient data a more probable model will also result in a more accurate
classifier.

This approach rests on the assumption that the generative model is correct.
When the classification task is one of classifying human-authored texts (as we
consider here) the true generative model is impossible to parameterize, and instead
practitioners tend to use very simple representations. For example, the commonly
used naive Bayes classifier represents each authored document as a bag of words,
discarding all word-ordering information. The generative model for this classifier
asserts that documents are created by a draw from a class-conditional multinomial.
As this is an extreme simplification of the authoring process, it is interesting to
ask whether such a generative modeling approach to semi-supervised learning is
appropriate or beneficial in the domain of text classification.

This chapter demonstrates that generative approaches are appropriate for semi-
supervised text classification when the selected generative model probabilities are
well correlated with classification accuracy, and when suboptimal local maxima
can be mostly avoided. In some cases, the naive Bayes generative model, despite its
simplicity, is sufficient. We find that model probability is strongly correlated with
classification accuracy, and expectation-maximization techniques yield classifiers
with unlabeled data that are significantly more accurate than those built with
labeled data alone. In other cases, the naive Bayes generative model is not well
correlated with classification accuracy. By adopting a more expressive generative
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model, accuracy and model probability correlations are restored, and again EM
yields good results.

One of the pitfalls of EM is that it only guarantees the discovery of local maxima
and not global maxima in model probability space. In domains like text classifica-
tion, with a very large number of parameters, this effect can be very significant.
We show that when model probability and classification are well correlated, the use
of deterministic annealing, an alternate modeling estimation process, finds more
probable and thus more accurate classifiers.

Nongenerative approaches have also been used for semi-supervised text classifica-
tion. Joachims (1999) uses transductive support vector machines to build discrimi-
native classifiers for several text classification tasks. Blum and Mitchell (1998) use
the co-training setting to build naive Bayes classifiers for webpages, using anchor
text and the page itself as two different sources of information about an instance.
Zelikovitz and Hirsh (2000) use unlabeled data as background knowledge to aug-
ment a nearest-neighbor classifier. Instead of matching a test example directly to
its closest labeled example, they instead match a test example to a labeled example
by measuring their similarity to a common set of unlabeled examples.

This chapter proceeds as follows. Section 3.2 presents the generative model used
for text classification and shows how to perform semi-supervised learning with EM.
Section 3.3 shows an example where this approach works well. Section 3.4 presents
a more expressive generative model that works when the naive Bayes assumption
is not sufficient, and experimental results from a domain that needs it. Section 3.5
presents deterministic annealing and shows that this finds model parameterizations
that are much more probable than those found by EM, especially when labeled data
are sparse.

3.2 A Generative Model for Text

This section presents a framework for characterizing text documents and shows how
to use this to train a classifier from labeled and unlabeled data. The framework
defines a probabilistic generative model, and embodies three assumptions about
the generative process: (1) the data are produced by a mixture model, (2) there
is a one-to-one correspondence between mixture components and classes, and (3)
the mixture components are multinomial distributions of individual words. These
are the assumptions used by the naive Bayes classifier, a commonly used tool
for standard supervised text categorization (Lewis, 1998; McCallum and Nigam,
1998a).

We assume documents are generated by a mixture of multinomials model, where
each mixture component corresponds to a class. Let there be M classes and a
vocabulary of size |X|; each document xi has |xi| words in it. How do we create a
document using this model? First, we roll a biased M -sided die to determine the
class of our document. Then, we pick up the biased |X|-sided die that corresponds
to the chosen class. We roll this die |xi| times, and count how many times each
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word occurs. These word counts form the generated document.
Formally, every document is generated according to a probability distribution

defined by the parameters for the mixture model, denoted θ. The probability
distribution consists of a mixture of components cj ∈ [M ].1 A document, xi, is
created by first selecting a mixture component according to the mixture weights
(or class probabilities), P(cj|θ), then using this selected mixture component to
generate a document according to its own parameters, with distribution P(xi|cj ; θ).
Thus, the likelihood of seeing document xi is a sum of total probability over all
mixture components:

P(xi|θ) =
∑

j∈[M ]

P(cj |θ)P(xi|cj ; θ). (3.1)

Each document has a class label. We assume a one-to-one correspondence between
mixture model components and classes, and thus use cj to indicate the jth mixture
component, as well as the jth class. The class label for a particular document xi is
written yi. If document xi was generated by mixture component cj we say yi = cj .

A document, xi, is a vector of word counts. We write xit to be the number of
times word wt occurs in document xi. When a document is to be generated by a
particular mixture component a document length, |xi| =

∑|X|
t=1 xit, is first chosen

independently of the component.2 Then, the selected mixture component is used
to generate a document of the specified length, by drawing from its multinomial
distribution.

From this we can expand the second term from (3.1), and express the probability
of a document given a mixture component in terms of its constituent features: the
document length and the words in the document.3

P(xi|cj ; θ) ∝ P(|xi|)
∏

wt∈X

P(wt|cj ; θ)
xit . (3.2)

This formulation embodies the standard naive Bayes assumption: that the words
of a document are conditionally independent of the other words in the same
document, given the class label.

Thus the parameters of an individual mixture component define a multinomial
distribution over words, i.e. the collection of word probabilities, each written
θwt|cj

, such that θwt|cj
≡ P(wt|cj ; θ), where t ∈ [|X|] and

∑
t P(wt|cj ; θ) = 1.

Since we assume that for all classes, document length is identically distributed, it
does not need to be parameterized for classification. The only other parameters

1. We use the notation [M ] to refer to the set {1, . . . , M}.
2. This assumes that document length is independent of class, though length could also
be modeled and parameterized on a class-by-class basis.
3. We omit here the multinomial coefficients for notational simplicity. For classification
purposes, these coefficients cancel out.
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of the model are the mixture weights (class probabilities),θcj ≡ P(cj |θ), which
indicate the probabilities of selecting the different mixture components. Thus the
complete collection of model parameters, θ, defines a set of multinomials and class
probabilities: θ = {θwt|cj

: wt ∈ X, cj ∈ [M ] ; θcj
: cj ∈ [M ]}.

To summarize, the full generative model, given by combining Eqs. 3.1 and 3.2,
assigns probability P (xi|θ) to generating document xi as follows:

P(xi|θ) ∝ P(|xi|)
∑

j∈[M ]

P(cj |θ)
∏

wt∈X

P(wt|cj ; θ)
xit (3.3)

where the set of word counts xit is a sufficient statistic for the parameter vector θ
in this generative model.

3.2.1 Supervised Text Classification with Generative Models

Learning a naive Bayes text classifier from a set of labeled documents consists of
estimating the parameters of the generative model. The estimate of the parameters
θ is written θ̂. Naive Bayes uses the maximum a posteriori (MAP) estimate, thus
finding argmaxθ P(θ|X, Y ). This is the value of θ that is most probable given the
evidence of the training data and a prior.

Our prior distribution is formed with the product of Dirichlet distributions—one
for each class multinomial and one for the overall class probabilities. The Dirichlet
is the commonly used conjugate prior distribution for multinomial distributions.
The form of the Dirichlet is

P(θwt|cj
|α) ∝

∏

wt∈X

P(wt|cj)
αt−1. (3.4)

where the αt are constants greater than zero. We set all αt = 2, which corresponds
to a prior that favors the uniform distribution. This is identical to Laplace and
m-estimate smoothing. A well-presented introduction to Dirichlet distributions is
given by Stolcke and Omohundro (1994).

The parameter estimation formulas that result from maximization with the data
and our prior are the familiar smoothed ratios of empirical counts. The word
probability estimates θ̂wt|cj

are

θ̂wt|cj
≡ P(wt|cj ; θ̂) =

1 +
∑

xi∈X δijxit

|X| +
∑|X|

s=1

∑
xi∈X δijxis

, (3.5)

where δij is given by the class label: 1 when yi = cj and 0 otherwise.
The class probabilities, θ̂cj , are estimated in the same manner, and also involve

a ratio of counts with smoothing:
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θ̂cj ≡ P(cj|θ̂) =
1 +

∑|X|
i=1 δij

M + |X |
. (3.6)

The derivation of these ratios-of-counts formulas comes directly from maximum
a posteriori parameter estimation. Finding the θ that maximizes P(θ|X, Y ) is
accomplished by first breaking this expression into two terms by the Bayes rule:
P(θ|X, Y ) ∝ P(X, Y |θ)P(θ). The first term is calculated by the product of all
the document likelihoods (from Eq. 3.1). The second term, the prior distribution
over parameters, is the product of Dirichlets. The whole expression is maximized
by solving the system of partial derivatives of log(P(θ|X, Y )), using Lagrange
multipliers to enforce the constraint that the word probabilities in a class must
sum to one. This maximization yields the ratio of counts seen above.

Given estimates of these parameters calculated from labeled training documents,
it is possible to turn the generative model backward and calculate the probability
that a particular mixture component generated a given document to perform
classification. This follows from an application of the Bayes rule:

P(yi = cj |xi; θ̂) =
P(cj |θ̂)P(xi|cj ; θ̂)

P(xi|θ̂)

=
P(cj |θ̂)

∏
wt∈X P(wt|cj ; θ̂)xit

∑M
k=1 P(ck|θ̂)

∏
wt∈X P(wt|ck; θ̂)xit

. (3.7)

If the task is to classify a test document xi into a single class, then the class with
the highest posterior probability, argmaxj P(yi = cj |xi; θ̂), is selected.

3.2.2 Semi-Supervised Text Classification with EM

In the semi-supervised setting with labeled and unlabeled data, we would still like
to find MAP parameter estimates, as in the supervised setting above. Because there
are no labels for the unlabeled data, the closed-form equations from the previous
section are not applicable. However, using the EM technique, we can find locally
MAP parameter estimates for the generative model.

The EM technique as applied to the case of labeled and unlabeled data with
naive Bayes yields a straightforward and appealing algorithm. First, a naive Bayes
classifier is built in the standard supervised fashion from the limited amount of
labeled training data. Then, we perform classification of the unlabeled data with
the naive Bayes model, noting not the most likely class but the probabilities
associated with each class. Then, we rebuild a new naive Bayes classifier using all the
data—labeled and unlabeled—using the estimated class probabilities as true class
labels. This means that the unlabeled documents are treated as several fractional
documents according to these estimated class probabilities. We iterate this process
of classifying the unlabeled data and rebuilding the naive Bayes model until it
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converges to a stable classifier and set of labels for the data. This is summarized in
algorithm 3.1.

Algorithm 3.1 Basic EM algorithm for semi-supervised learning of a text classifier

• Inputs: Collections Xl of labeled documents and Xu of unlabeled documents.

• Build an initial naive Bayes classifier, θ̂, from the labeled documents, Xl, only.
Use maximum a posteriori parameter estimation to find θ̂ = arg maxθ P(Xl|θ)P(θ)
(see Eqs. 3.5 and 3.6).

• Loop while classifier parameters improve, as measured by the change in l(θ|X, Y )
(the log probability of the labeled and unlabeled data, and the prior) (see Equa-
tion 3.8):

• (E step) Use the current classifier, θ̂, to estimate component membership
of each unlabeled document, i.e., the probability that each mixture component
(and class) generated each document, P(cj|xi; θ̂) (see Eq. 3.7).

• (M step) Re-estimate the classifier, θ̂, given the estimated component mem-
bership of each document. Use maximum a posteriori parameter estimation to
find θ̂ = argmaxθ P(X, Y |θ)P(θ) (see Eqs. 3.5 and 3.6).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class
label.

More formally, learning a classifier is approached as calculating a maximum
a posteriori estimate of θ, i.e. argmaxθ P(θ)P(X, Y |θ), which is equivalent to
maximizing the log of the same. Consider the second term of the maximization, the
probability of all the observable data. The probability of an individual unlabeled
document is a sum of total probability over all the classes, as in Eq. 3.1. For the
labeled data, the generating component is already given by label yi and we do not
need to refer to all mixture components—just the one corresponding to the class.
Using Xu to refer to the unlabeled examples, and Xl to refer to the examples for
which labels are given, the expected log probability of the full data is

l(θ|X, Y ) = log(P(θ)) +
∑

xi∈Xu

log
∑

j∈[M ]

P(cj|θ)P(xi|cj ; θ)

+
∑

xi∈Xl

log (P(yi = cj |θ)P(xi|yi = cj ; θ)) . (3.8)

(We have dropped the constant terms for convenience.) Notice that this equation
contains a log of sums for the unlabeled data, which makes a maximization by
partial derivatives computationally intractable. The formalism of EM (Dempster
et al., 1977) provides an iterative hill-climbing approach to finding local maxima
of model probability in parameter space. The E step of the algorithm estimates
the expectations of the missing values (i.e., unlabeled class information) given the
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latest iteration of the model parameters. The M step maximizes the likelihood of
the model parameters using the previously computed expectations of the missing
values as if they were the true ones.

In practice, the E step corresponds to performing classification of each unlabeled
document using Eq. 3.7. The M step corresponds to calculating a new maximum a
posteriori (MAP) estimate for the parameters, θ̂, using Eqs. 3.5 and 3.6 with the
current estimates for P(cj|xi; θ̂).

Essentially all initializations of the parameters lead to some local maxima with
EM. Many instantiations of EM begin by choosing a starting model parameteri-
zation randomly. In our case, we can be more selective about the starting point
since we have not only unlabeled data but also some labeled data. Our iteration
process is initialized with a priming M step, in which only the labeled documents
are used to estimate the classifier parameters, θ̂, as in Eqs. 3.5 and 3.6. Then the
cycle begins with an E step that uses this classifier to probabilistically label the
unlabeled documents for the first time.

The algorithm iterates until it converges to a point where θ̂ does not change
from one iteration to the next. Algorithmically, we determine that convergence
has occurred by observing a below-threshold change in the log-probability of the
parameters (Eq. 3.8), which is the height of the surface on which EM is hill-
climbing.

3.2.3 Discussion

The justifications for this approach depend on the assumptions stated in section 3.2,
namely, that the data are produced by a mixture model, and that there is a one-
to-one correspondence between mixture components and classes. If the generative
modeling assumptions were correct, then maximizing model probability would be
a good criterion indeed for training a classifier. In this case the Bayes optimal
classifier, when the number of training examples approaches infinity, corresponds
to the MAP parameter estimates of the model. When these assumptions do not
hold—as certainly is the case in real-world textual data—the benefits of unlabeled
data are less clear. With only labeled data, the naive Bayes classifier does a good job
of classifying text documents (Lewis and Ringuette, 1994; Craven et al., 2000; Yang
and Pedersen, 1997; Joachims, 1997; McCallum et al., 1998). This observation is
explained in part by the fact that classification estimation is only a function of the
sign (in binary classification) of the function estimation (Domingos and Pazzani,
1997; Friedman, 1997). The faulty word independence assumption exacerbates the
tendency of naive Bayes to produce extreme (almost 0 or 1) class probability
estimates. However, classification accuracy can be quite high even when these
estimates are inappropriately extreme.

Semi-supervised learning leans more heavily on the correctness of the modeling
assumptions than supervised learning. The next section will show empirically that
this method can indeed dramatically improve the accuracy of a document classifier,
especially when there are only a few labeled documents.
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Figure 3.1 Classification accuracy on the 20 Newsgroups data set, both with and without
10,000 unlabeled documents. With small amounts of training data, using EM yields more
accurate classifiers. With large amounts of labeled training data, accurate parameter
estimates can be obtained without the use of unlabeled data, and classification accuracies
of the two methods begin to converge.

3.3 Experimental Results with Basic EM

In this section we demonstrate that semi-supervised learning with labeled and
unlabeled data provides text classifiers that are more accurate than those provided
by supervised learning using only the labeled data. This is an interesting result
as the mixture of multinomials generative model is a dramatic simplification of
the true authoring process. However, we demonstrate that for some domains, the
optimization criteria of model probability are strongly correlated with classification
accuracy.

Experiments in this section use the well-known 20 Newsgroups text classifica-
tion data set (Mitchell, 1997), consisting of about 20,000 Usenet articles evenly
distributed across 20 newsgroups. The task is to classify an article into the news-
group to which it was posted. For preprocessing, stopwords are removed and word
counts of each document are scaled such that each document has constant length,
with potentially fractional word counts. As the data have timestamps, a test set
is formed from the last 20% of articles from each newsgroup. An unlabeled set is
formed by randomly selecting 10,000 articles from those remaining. Labeled train-
ing sets are formed by partitioning the remaining documents into nonoverlapping
sets. We create up to ten training sets per size of the set, as data are available.
When posterior model probability is reported and shown on graphs, some additive
and multiplicative constants are dropped, but the relative values are maintained.

Figure 3.1 shows the effect of using EM with unlabeled data on this data set. The
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Figure 3.2 A scatterplot showing the correlation between the posterior model proba-
bility and the accuracy of a model trained with labeled and unlabeled data. The strong
correlation implies that model probability is a good optimization criteria for the 20 News-

groups data set.

vertical axis indicates average classifier accuracy on test sets, and the horizontal axis
indicates the amount of labeled training data on a log scale. We vary the amount of
labeled training data, and compare the classification accuracy of traditional naive
Bayes (no unlabeled documents) with an EM learner that has access to 10.000
unlabeled documents.

EM performs significantly better than traditional naive Bayes. For example,
with 300 labeled documents (15 documents per class), naive Bayes reaches 52%
accuracy while EM achieves 66%. This represents a 30% reduction in classification
error. Note that EM also performs well even with a very small number of labeled
documents; with only 20 documents (a single labeled document per class), naive
Bayes obtains 20%, EM 35%. As expected, when there are a lot of labeled data,
and the naive Bayes learning curve is close to a plateau, having unlabeled data
does not help nearly as much, because there are already enough labeled data to
accurately estimate the classifier parameters. With 5500 labeled documents (275
per class), classification accuracy increases from 76% to 78%. Each of these results
is statistically significant (p < 0.05).4

How does EM find more accurate classifiers? It does so by optimizing on posterior
model probability, not classification accuracy directly. If our generative model were
perfect, then we would expect model probability and accuracy to be correlated and

4. When the number of labeled examples is small, we have multiple trials, and use paired
t-tests. When the number of labeled examples is large, we have a single trial, and report
results instead with a McNemar test. These tests are discussed further by Dietterich (1998).
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EM to be helpful. But we know that our simple generative model does not capture
many of the properties contained in the text. Our 20 Newsgroups results show that
we do not need a perfect model for EM to help text classification. Generative models
are representative enough for the purposes of text classification if model probability
and accuracy are correlated, allowing EM to indirectly optimize accuracy.

To illustrate this more definitively, let us look again at the 20 Newsgroups

experiments, and empirically measure this correlation. Figure 3.2 demonstrates the
correlation—each point in the scatterplot is one of the labeled and unlabeled splits
from figure 3.1. The labeled data here are used only for setting the EM initialization
and are not used during iterations. We plot classification performance as accuracy
on the test data and show the posterior model probability.

For this data set, classification accuracy and model probability are in good
correspondence. The correlation coefficient between accuracy and model probability
is 0.9798, a very strong correlation indeed. We can take this as a post hoc verification
that this data set is amenable to using unlabeled data via a generative model
approach. The optimization criterion of model probability is applicable here because
it is in tandem with accuracy.

3.4 Using a More Expressive Generative Model

The second assumption of the generative model of section 3.2 states that there
is a one-to-one correspondence between classes and components in the mixture
model. In some text domains, it is clear that such an assumption is a dangerous
one. Consider the task of text filtering, where we want to identify a small well-
defined class of documents from a very large pool or stream of documents. One
example might be a system that watches a network administrator’s incoming emails
to identify the rare emergency situation that would require paging her on vacation.
Modeling the nonemergency emails as the negative class with only one multinomial
distribution will result in an unrepresentative model. The negative class contains
emails with a variety of subtopics: personal emails, nonemergency requests, spam,
and many more.

What would be a more representative model? Instead of modeling a sea of
negative examples with a single mixture component, it might be better to model
it with many components. In this way, each negative component could, after
maximization, capture one clump of the sea of examples. This section takes exactly
the approach suggested by this example for text data, and relaxes the assumption of
a one-to-one correspondence between mixture components and classes. We replace it
with a less restrictive assumption: a many-to-one correspondence between mixture
components and classes. This allows us to model the subtopic structure of a class.
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3.4.1 Multiple Mixture Components per Class

The new generative model must account for a many-to-one correspondence between
mixture components and classes. As in the old model, we first pick a class with a
biased die roll. Each class has several subtopics; we next pick one of these subtopics,
again with a biased die roll. Now that the subtopic is determined, the document’s
words are generated. We do this by first picking a length (independently of subtopic
and class) and then draw the words from the subtopic’s multinomial distribution.

Unlike previously, there are now two missing values for each unlabeled document—
its class and its subtopic. Even for the labeled data there are missing values; al-
though the class is known, its subtopic is not. Since we do not have access to
these missing class and subtopic labels, we must use a technique such as EM to
estimate local MAP generative parameters. As in section 3.2.2, EM is instantiated
as an iterative algorithm that alternates between estimating the values of missing
class and subtopic labels, and calculating the MAP parameters using the estimated
labels. After EM converges to high-probability parameter estimates the generative
model can be used for text classification by turning it around with the Bayes rule.

The new generative model specifies a separation between mixture components
and classes. Instead of using cj to denote both of these, cj ∈ [N ] now denotes only
the jth mixture component (subtopic). We write ta ∈ [M ] for the ath class; when
component cj belongs to class ta, then qaj = 1, and otherwise 0. This represents the
predetermined, deterministic, many-to-one mapping between mixture components
and classes. We indicate the class label and subtopic label of a document by yi and
zi, respectively. Thus if document xi was generated by mixture component cj we
say zi = cj , and if the document belongs to class ta, then we say yi = ta.

If all the class and subtopic labels were known for our data set, finding MAP
estimates for the generative parameters would be a straightforward application of
closed-form equations similar to those for naive Bayes seen in section 3.2.1. The
formula for the word probability parameters is identical to Eq. 3.5 for naive Bayes:

θ̂wt|cj
≡ P(wt|cj ; θ̂) =

1 +
∑

xi∈X δijxit

|X| +
∑|X|

s=1

∑
xi∈X δijxis

. (3.9)

The class probabilities are analogous to Eq. 3.6, but using the new notation for
classes instead of components:

θ̂ta ≡ P(ta|θ̂) =
1 +

∑|X|
i=1 δia

M + |X |
. (3.10)

The subtopic probabilities are similar, except they are estimated only with reference
to other documents in that component’s class:
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θ̂cj |ta
≡ P(cj |ta; θ̂) =

1 +
∑|X|

i=1 δijδia
∑N

j=1 qaj +
∑|X|

i=1 δia

. (3.11)

At classification time, we must estimate class membership probabilities for an
unlabeled document. This is done by first calculating subtopic membership and
then summing over subtopics to get overall class probabilities. Subtopic membership
is calculated analogously to mixture component membership for naive Bayes, with
a small adjustment to account for the presence of two priors (class and subtopic)
instead of just one:

P(zi = cj |xi; θ̂) =

∑
a∈[M ] qajP(ta|θ̂)P(cj |ta; θ̂)

∏
wt∈X P(wt|cj ; θ̂)xit

∑
r∈[N ]

∑
b∈[M ] qbrP(tb|θ̂)P(cr|tb; θ̂)

∏
wt∈X P(wt|cr; θ̂)xit

. (3.12)

Overall class membership is calculated with a sum of probability over all of the
class’s subtopics:

P(yi = ta|xi; θ̂) =
∑

j∈[N ]

qajP(zi = cj |xi; θ̂). (3.13)

These equations for supervised learning are applicable only when all the training
documents have both class and subtopic labels. Without these we use EM. The
M step, as with basic EM, builds maximum a posteriori parameter estimates for
the multinomials and priors. This is done with Eqs. 3.9, 3.10, and 3.11, using the
probabilistic class and subtopic memberships estimated in the previous E step. In
the E step, for the unlabeled documents we calculate probabilistically weighted
subtopic and class memberships (Eqs. 3.12 and 3.13). For labeled documents, we
must estimate subtopic membership. But we know from its given class label that
many of the sub-topic memberships must be zero—those subtopics that belong to
other classes. Thus we calculate subtopic memberships as for the unlabeled data,
but setting the appropriate ones to zero, and normalizing the non-zero ones over
only those topics that belong to its class.

If we are given a set of class-labeled data, and a set of unlabeled data, we can now
apply EM if there is some specification of the number of subtopics for each class.
However, this information is not typically available. As a result we must resort to
some techniques for model selection. There are many commonly used approaches
to model selection such as cross-validation, Akaike information criterion (AIC),
bayesian information criterion (BIC) and others. Since we do have the availability
of a limited number of labeled documents, we use cross-validation to select the
number of subtopics for classification performance.
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Table 3.1 Classification accuracy of binary classifiers on Reuters with traditional naive
Bayes (NB1), basic EM (EM1) with labeled and unlabeled data, multiple mixture compo-
nents using just labeled data (NB*), and multiple mixture components EM with labeled
and unlabeled data (EM*). For NB* and EM*, the number of components is selected
optimally for each trial, and the median number of components across the trials used for
the negative class is shown in parentheses. Note that the multicomponent model is more
natural for Reuters, where the negative class consists of many topics. Using both unlabeled
data and multiple mixture components per class increases performance over either alone,
and over naive Bayes.

Category NB1 EM1 NB* EM*

acq 86.9 81.3 88.0 (4) 93.1 (10)

corn 94.6 93.2 96.0 (10) 97.2 (40)

crude 94.3 94.9 95.7 (13) 96.3 (10)

earn 94.9 95.2 95.9 (5) 95.7 (10)

grain 94.1 93.6 96.2 (3) 96.9 (20)

interest 91.8 87.6 95.3 (5) 95.8 (10)

money-fx 93.0 90.4 94.1 (5) 95.0 (15)

ship 94.9 94.1 96.3 (3) 95.9 (3)

trade 91.8 90.2 94.3 (5) 95.0 (20)

wheat 94.0 94.5 96.2 (4) 97.8 (40)

3.4.2 Experimental Results

Here, we provide empirical evidence that to use unlabeled data with a generative
modeling approach, more expressive generative models are sometimes necessary.
With the original generative model, classification accuracy and model probability
can be negatively correlated, leading to lower classification accuracy when unlabeled
data are used. With a more expressive generative model, a moderate positive
correlation is achieved, leading to improved classification accuracies.

The Reuters 21578 Distribution 1.0 data set consists of about 13,000 news articles
from the Reuters newswire labeled with 90 topic categories. Documents in this
data set have multiple class labels, and each category is traditionally evaluated
with a binary classifier. Following several other studies (Joachims, 1998; Liere and
Tadepalli, 1997) we build binary classifiers for each of the ten most populous classes
to identify the topic. We use a stoplist, but do not stem. The vocabulary size for
each Reuters trial is selected by optimizing accuracy as measured by leave-one-out
cross-validation on the labeled training set. The standard ModApte train/test split
is used, which is time-sensitive. Seven thousand of the 9603 documents available
for training are left unlabeled. From the remaining, we randomly select up to
ten nonoverlapping training sets of just ten positively labeled documents and 40
negatively labeled documents.

The first two columns of results in table 3.1 repeat the experiments of section 3.3
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Figure 3.3 Scatterplots showing the relationship between model probability and classi-
fication accuracy for the Reuters acq task. On the left, with only one mixture component
for the negative class, probability and accuracy are inversely proportional, exactly what
we would not want. On the right, with ten mixture components for negative, there is a
moderate positive correlation between model probability and classification accuracy.

with basic EM on the Reuters data set. Here we see that for most categories,
classification accuracy decreases with the introduction of unlabeled data. For each
of the Reuters categories EM finds a significantly more probable model, given the
evidence of the labeled and unlabeled data. But frequently this more probable model
corresponds to a lower-accuracy classifier—not what we would hope for.

The first graph in figure 3.3 provides insight into why unlabeled data hurt. With
one mixture component per class, the correlation between classification accuracy
and model probability is very strong (r = −0.9906), but in the wrong direction!
Models with higher probability have significantly lower classification accuracy. By
examining the solutions found by EM, we find that the most probable clustering of
the data has one component with the majority of negative documents and the second
with most of the positive documents, but significantly more negative documents.
Thus, the classes do not separate with high-probability models.

The documents in this data set often have multiple class labels. With the basic
generative model, the negative class covers up to 89 distinct categories. Thus, it is
unreasonable to expect to capture such a broad base of text with a single mixture
component. For this reason, we relax the generative model and model the positive

class with a single mixture component and the negative class with between one and
forty mixture components, both with and without unlabeled data.

The second half of table 3.1 shows results of using multiple mixtures per class
generative model. Note two different results. First, with labeled data alone (NB*),
classification accuracy improves over the single component per class case (NB1).
Second, with unlabeled data, the new generative model results (EM*) are generally
better than the other results. This increase with unlabeled data, measured over all
trials of Reuters, is statistically significant (p < 0.05).

With ten mixture components the correlation between accuracy and model
probability is quite different. Figure 3.3 on the right shows the correlation between
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Table 3.2 Performance of using multiple mixture components when the number of
components is selection via cross-validation (EM*CV) compared to the optimal selection
(EM*) and straight naive Bayes (NB1). Note that cross-validation usually selects too few
components.

Category NB1 EM* EM*CV EM*CV vs NB1

acq 86.9 93.1 (10) 91.1 (5) +4.2

corn 94.6 97.2 (40) 93.2 (3) -1.4

crude 94.3 96.3 (10) 95.4 (3) +1.1

earn 94.9 95.7 (10) 95.2 (1) +0.3

grain 94.1 96.9 (20) 94.7 (3) +0.6

interest 91.8 95.8 (10) 92.0 (3) +0.2

money-fx 93.0 95.0 (15) 92.3 (3) -0.7

ship 94.9 95.9 (3) 94.4 (3) -0.5

trade 91.8 95.0 (20) 90.7 (3) -1.1

wheat 94.0 97.8 (40) 96.3 (6) +2.3

accuracy and model probability when using ten mixture components to model the
negative class. Here, there is a moderate correlation between model probability
and classification accuracy in the right direction (r = 0.5474). For these solutions,
one component covers nearly all the positive documents and some, but not many,
negatives. The other ten components are distributed through the remaining negative

documents. This model is more representative of the data for our classification task
because classification accuracy and model probability are correlated. This allows
the beneficial use of unlabeled data through the generative model approach.

One obvious question is how to automatically select the best number of mixture
components without having access to the test set labels. We use leave-one-out cross-
validation. Results from this technique (EM*CV), compared to naive Bayes (NB1)
and the best EM (EM*), are shown in table 3.2. Note that cross-validation does
not perfectly select the number of components that perform best on the test set.
The results consistently show that selection by cross-validation chooses a smaller
number of components than is best.

3.4.3 Discussion

There is tension in this model selection process between complexity of the model
and data sparsity. With as many subtopics as there are documents, we can perfectly
model the training data—each subtopic covers one training document. With still a
large number of subtopics, we can accurately model existing data, but generalization
performance will be poor. This is because each multinomial will have its many
parameters estimated from only a few documents and will suffer from sparse
data. With very few subtopics, the opposite problem will arise. We will very
accurately estimate the multinomials, but the model will be overly restrictive,
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and not representative of the true document distribution. Cross-validation should
help in selecting a good compromise between these tensions with specific regard to
classification performance.

Note that our use of multiple mixture components per class allows us to capture
some dependencies between words on the class level. For example, consider a sports

class consisting of documents about both hockey and baseball. In these documents,
the words ice and puck are likely to co-occur, and the words bat and base are
likely to co-occur. However, these dependencies cannot be captured by a single
multinomial distribution over words in the sports class. With multiple mixture
components per class, one multinomial can cover the hockey subtopic, and another
the baseball subtopic. In the hockey subtopic, the word probability for ice and
puck will be significantly higher than they would be for the whole class. This makes
their co-occurrence more likely in hockey documents than it would be under a single
multinomial assumption.

3.5 Overcoming the Challenges of Local Maxima

In cases where the likelihood in parameter space is well correlated with classifi-
cation accuracy, our optimization yields good classifiers. However, local maxima
significantly hinder our progress. For example, the local maxima we discover with
just a few labeled examples in section 3.3 are more than 40 percentage points below
the classification accuracy provided when labeled data are plentiful. Thus it is im-
portant to consider alternative approaches that can help bridge this gap, especially
when labeled data are sparse.

Typically variants of, or alternatives to, EM are created for the purpose of
speeding up the rate of convergence (McLachlan and Krishnan, 1997). In the domain
of text classification, however, we have seen that convergence is very fast. Thus, we
can easily consider alternatives to EM that improve the local maxima situation
at the expense of slower convergence. Deterministic annealing makes exactly this
tradeoff.

3.5.1 Deterministic Annealing

The intuition behind deterministic annealing is that it begins by maximizing on a
very smooth, convex surface that is only remotely related to our true probability
surface of interest. Initially we can find the global maximum of this simple surface.
Ever so slowly, we change the surface to become both more bumpy, and more close
to the true probability surface. If we follow the original maximum as the surface
gets more complex, then when the original surface is given, we’ll still have a highly
probable maximum. In this way, it avoids many of the local maxima that EM would
otherwise get caught in.

One can think of our application of EM in the previous sections as an optimization
problem where the loss function is the negation of the likelihood function (Eq. 3.8).
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The iterations of EM are a hill-climbing algorithm in parameter space that locally
minimizes this loss.

Consider the closely related set of loss functions:

l(θ|X, Y ) =
∑

xi∈Xu

log
∑

cj∈[M ]

[P(cj |θ)P(xi|cj ; θ)]
β

+
∑

xi∈Xl

log([P(yi = cj|θ)P(xi|yi = cj ; θ)]
β), (3.14)

where β varies between zero and one. When β = 1 we have our familiar probability
surface of the previous sections, with good correlation to classification accuracy,
but with many harmful local maximum. In the limit as β approaches zero, the
surface value of the loss function in parameter space becomes convex with just
a single global maximum. But, at this extreme, the provided data have no effect
on the loss function, so the correlation with classification accuracy is poor. Values
between zero and one represent various points in the tradeoff between smoothness
of the parameter space and the similarity to the well-correlated probability surface
provided by the data.

This insight is the one that drives the approach called deterministic annealing
(Rose et al., 1992), first used as a way to construct a hierarchy during unsupervised
clustering. It has also been used to estimate the parameters of a mixture of
Gaussians from unlabeled data (Ueda and Nakano, 1995) and to construct a text
hierarchy from unlabeled data (Hofmann and Puzicha, 1998).

For a fixed value of β, we can find a local maximum given the loss function by
iterating the following steps:

E step: Calculate the expected value of the class assignments,

ẑ(k+1)
ij = E[yi = cj |xi; θ̂

k] =
[P(cj |θ̂k)P(xi|cj ; θ̂

k)]β
∑

cr∈[M ]

[P(cr|θ̂k)P(xi|cr; θ̂
k)]β

. (3.15)

M step: Find the most likely model using the expected class assignments,

θ̂(k+1) = argmaxθP(θ|X ; Y ; ẑ(k+1)). (3.16)

The M step is identical to that of section 3.2.2, while the E step includes reference
to the loss constraint through β.

Formally, β is a Lagrange multiplier when solving for a fixed loss in the likelihood
space subject to an optimization criterion of maximum entropy (or minimum
relative entropy to the prior distribution). A β near zero corresponds to finding
the maximum entropy parameterization for a model with a very large allowable
loss.

Consider how model likelihood (Eq. 3.14) is affected by different target losses.
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When the target loss is very large, β will be very close to zero; the probability of
each model will very nearly be its prior probability as the influence of the data will
be negligible. In the limit as β goes to zero, the probability surface will be convex
with a single global maximum. For a somewhat smaller loss target, β will be small
but not negligible. Here, the probability of the data will have a stronger influence.
There will no longer be a single global maximum, but several. When β = 1 we have
our familiar probability surface of the previous chapters, with many local maxima.

These observations suggest an annealing-like process for finding a low-loss model.
If we initialize β to be very small, we can easily find the global maximum a posteriori
solution with EM, as the surface is convex. When we raise β the probability surface
will get slightly more bumpy and complex, as the data likelihood will have a larger
impact on the probability of the model. Although more complex, the new maximum
will be very close to the old maximum if we have lowered the temperature (1/β) only
slightly. Thus, when searching for the maximum with EM, we can initialize it with
the old maximum and will converge to a good maximum for the new probability
surface. In this way, we can gradually raise β, while tracking a highly probable
solution. Eventually, when β becomes 1, we will have a good local maximum for
our generative model assumptions. Thus, we will have found a high-probability local
maximum from labeled and unlabeled data that we can then use for classification.

Note that the computational cost of deterministic annealing is significantly higher
than EM. While each iteration takes the same computation, there are many more
iterations with deterministic annealing, as the temperature is reduced very slowly.
For example, in our experiments, we performed 390 iterations for deterministic
annealing, and only seven for EM. When this extra computation can be afforded,
the benefit may be more accurate classifiers.

3.5.2 Experimental Results

In this section we see empirically that deterministic annealing finds more probable
parameters and more accurate classifiers than EM when labeled training data are
sparse.

For the experimental results, we use the News5 data set, a subset of 20 Newsgroups

containing the five confusable comp.* classes. We fix a single vocabulary for all
experiments as the top 4000 words as measured by mutual information over the
entire labeled data set. For running the deterministic annealing, we initialize β to
0.02, and at each iteration we increase β by a multiplicative factor of 1.01 until
β = 1. We made little effort to tune these parameters. Since each time we increase
β the probability surface changes only slightly, we run only one iteration of EM
at each temperature setting. Six hundred random documents per class (3000 total)
are treated as unlabeled. A fixed number of labeled examples per class are also
randomly selected. The remaining documents are used as a test set.

Figure 3.4 compares classification accuracy achieved with deterministic annealing
to that achieved by regular EM. The initial results indicate that the two methods
perform essentially the same when labeled data are plentiful, but deterministic an-
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Figure 3.4 The performance of deterministic annealing compared to EM. If class-to-
component assignment was done perfectly deterministic annealing would be considerably
more accurate than EM when labeled data are sparse. Although the default correspondence
is poor, this can be corrected with a small amount of domain knowledge.

nealing actually performs worse when labeled data are sparse. For example, with
two labeled examples per class (ten total) EM gives 58% accuracy where deter-
ministic annealing gives only 51%. A close investigation of the confusion matrices
shows that there is a significant detrimental effect of incorrect class-to-component
correspondence with deterministic annealing when labeled data are sparse. This
occurs because, when the temperature is very high, the global maximum will have
each multinomial mixture component very close to its prior, and the influence of
the labeled data is minimal. Since the priors are the same, each mixture component
will be essentially identical. As the temperature lowers and the mixture compo-
nents become more distinct, one component can easily track the cluster associated
with the wrong class, when there are insufficient labeled data to pull it toward the
correct class.

In an attempt to remedy this, we alter the class-to-cluster correspondence based
on the classification of each labeled example after deterministic annealing is com-
plete. Figure 3.4 shows both the accuracy obtained by empirically selected corre-
spondence, and also the optimal accuracy achieved by perfect correspondence. We
see that by empirically setting the correspondence, deterministic annealing improves
accuracy only marginally. Where before it got 51%, by changing the correspondence
we increase this to 55%, still not better than EM at 58%. However if we could per-
form perfect class correspondence, accuracy with deterministic annealing would be
67%, considerably higher than EM.

To verify that the higher accuracy of deterministic annealing comes from finding
more probable models, figure 3.5 shows a scatterplot of model probability versus
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Figure 3.5 A scatterplot comparing the model probabilities and accuracies of EM and
deterministic annealing. The results show that deterministic annealing succeeds because
it finds models with significantly higher probability.

accuracy for deterministic annealing (with optimal class assignment) and EM. Two
results of note stand out. The first is that indeed deterministic annealing finds much
more probable models, even with a small amount of labeled data. This accounts
for the added accuracy of deterministic annealing. A second note of interest is
that models found by deterministic annealing still lie along the same probability-
accuracy correlation line. This provides further evidence that model probability and
accuracy are strongly correlated for this data set, and that the correlation is not
just an artifact of EM.

3.5.3 Discussion

The experimental results show that deterministic annealing indeed could help clas-
sification considerably if class-to-component correspondence were solved. Determin-
istic annealing successfully avoids getting trapped in some poor local maxima and
instead finds more probable models. Since these high-probability models are cor-
related with high-accuracy classifiers, deterministic annealing makes good use of
unlabeled data for text classification.

The class-correspondence problem is most severe when there are only limited
labeled data. This is because with fewer labeled examples, it is more likely that
small perturbations can lead the correspondence astray. However, with just a
little bit of human knowledge, the class-correspondence problem can typically be
solved trivially. In all but the largest and most confusing classification tasks, it is
straightforward to identify a class given its most indicative words, as measured by
a metric such as the weighted log-likelihood ratio. For example, the top ten words
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Table 3.3 The top ten words per class of the News5 data set, Usenet groups in the
comp hierarchy. The words are sorted by the weighted log-likelihood ratio. Note that from
just these ten top words, any person with domain knowledge could correctly correspond
clusters and classes.

graphics os.ms-windows.misc sys.ibm.pc.hardware sys.mac.hardware windows.x

jpeg windows scsi apple window

image ei ide mac widget

graphics win drive lc motif

images um controller duo xterm

gif dos bus nubus server

format ms dx fpu lib

pub ini bios centris entry

ray microsoft drives quadra openwindows

tiff nt mb iisi usr

siggraph el card powerbook sun

per class of our data set by this metric are shown in table 3.3. From just these ten
words, any person with even the slightest bit of domain knowledge would have no
problem perfectly assigning classes to components. Thus, it is not unreasonable to
require a small amount of human effort to correct the class correspondence after
deterministic annealing has finished. This effort can be positioned within the active
learning framework. Thus, when labeled training data are sparsest, and a modest
investment by a trainer is available to map class labels to cluster components,
deterministic annealing will successfully find more probable and more accurate
models than traditional EM.

Even when this limited domain knowledge or human effort is not available, it
should be possible to estimate the class correspondence automatically. One could
perform both EM and deterministic annealing on the data. Since EM solutions
generally have the correct class correspondence, this model could be used to fix the
correspondence of the deterministic annealing model. That is, one could measure the
distance between each EM class multinomial and each deterministic annealing class
multinomial (with Kullback-Leibler divergence, for example). Then, this matrix of
distances could be used to assign the class labels of the EM multinomials to their
closest match to a multinomial in the deterministic annealing model.

3.6 Conclusions and Summary

This chapter has explored the use of generative models for semi-supervised learn-
ing with labeled and unlabeled data in domains of text classification. The widely
used naive Bayes classifier for supervised learning defines a mixture of multino-
mials mixture models. In some domains, model likelihood and classification accu-
racy are strongly correlated, despite the overly simplified generative model. Here,
expectation-maximization finds more likely models and improved classification ac-
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curacy. In other domains, likelihood and accuracy are not well correlated with the
naive Bayes model. Here, we can use a more expressive generative model that allows
for multiple mixture components per class. This helps restore a moderate correla-
tion between model likelihood and classification accuracy, and again, EM finds
more accurate models. Finally, even with a well-correlated generative model, local
maxima are a significant hindrance with EM. Here, the approach of deterministic
annealing does provide much higher likelihood models, but often loses the corre-
spondence with the class labels. When class label correspondence is easily corrected,
high accuracy models result.


