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Queries and responses

Two classic problems in natural languages

Synonymy Different words for the same concept

{car, automobile}, {picture, image, photo}

Polysemy Words have multiple meanings

Jaguar the car, vs jaguar the animal

Vector space representation does not tackle these problems

Recall, cosine similarity between query q and document d , q · d

Synonymy leads to underestimating q · d — q and d use different
words for same concept

Polysemy leads to overestimating q · d — same word has different
interpretation in q and d
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A concept space

Ideally, the building blocks of documents are concepts

I Different words may map to the same concept — synonymy

I The same word may map to multiple concepts — polysemy

Transform document representation from vector over terms to vector
over concepts

I In the language of linear algebra, find an alternate basis for document
space

Quantify correlation between words and concepts

Madhavan Mukund Data Mining and Machine Learning Lecture 23, Jan–Apr 2020 3 / 14



Singular Value Decomposition (SVD)

Term-document matrix M, dimensions n × d

I Rows are terms, columns are documents

I M[i , j ] is TF-IDF score for term i in document j

Decompose M as UDV>

I D is a k × k diagonal matrix, positive real entries

I U is n × k , V is d × k

I Columns of U, V are orthonormal — unit vectors, mutually orthogonal

Interpretation

I Columns of V correspond to new abstract concepts

I Rows of U describe decomposition of terms across concepts

I For columns ui of U and vi of V , ui · v>i is an n × d matrix, like M

I ui · v>i describes components of rows of M along direction vi
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Singular vectors

Unit vectors passing through the origin

Want to find “best” k singular vectors to represent concept space

Suppose we project ai = (ai1, ai2, . . . , aid) onto v through origin

Minimizing distance of ai from v is equivalent to maximizing the
projection of ai onto v

Length of the projection is ai · v
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Singular vectors . . .

Sum of squares of lengths of projections of all rows in M onto v —
|Mv|2

First singular vector — unit vector through origin that maximizes the
sum of projections of all rows in M

v1 = arg max
|v|=1
|Mv|

Second singular vector — unit vector through origin, perpendicular to
v1, that maximizes the sum of projections of all rows in M

v2 = arg max
v⊥v1; |v|=1

|Mv|

Third singular vector — unit vector through origin, perpendicular to
v1, v2, that maximizes the sum of projections of all rows in M

v3 = arg max
v⊥v1,v2; |v|=1

|Mv|
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Singular vectors . . .

With each singular vector vj , associated singular value is σj = |Mvj |

Repeat r times till max
v⊥v1,v2,...,vr ; |v|=1

|Mv| = 0

I r turns out to be the rank of M

I Vectors {v1, v2, . . . , vr} are orthonormal right singular vectors

Our greedy strategy provably produces “best-fit” dimension r
subspace for M

I Dimension r subspace that maximizes content of M projected onto it

Corresponding left singular vectors are given by ui =
1

σi
Mvi

Can show that {u1,u2, . . . ,ur} are also orthonormal
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Singular Value Decomposition

M, dimension n × d , of rank r uniquely decomposes as M = UDV>

I V = [v1 v2 · · · vr ] are the right singular vectors

I D is a diagonal matrix with D[i , i ] = σi , the singular values

I U = [u1 u2 · · · ur ] are the left singular vectors

M

n × d
=

U

n × r

D

r × r

V>

r × d
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Rank-k approximation

M has rank r , SVD gives rank r decomposition

Singular values are non-increasing — σ1 ≥ σ2 ≥ · · · ≥ σr

Suppose we retain only k largest ones

We have

I Matrix of first k right singular vectors Vk = [v1 v2 · · · vk ],

I Corresponding singular values σ1, σ2, . . . , σk

I Matrix of k left singular vectors Uk = [u1 u2 · · · uk ]

Let Dk be the k × k diagonal matrix with entries σ1, σ2, . . . , σk

Then UkDkV
>
k is the best fit rank-k approximation of M

In other words, by truncating the SVD, we can focus on k most
significant concepts implicit in M
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Latent Semantic Indexing

Term-document matrix Mn×d with rank-k SVD UkDkV
>
k

Mk = UkDkV
>
k is the reduced term-document matrix

I Column i of Mk is a document di over original terms

I Column i of V>
k is a transformed document d̂i

I d̂i is a representation of di in terms of k new abstract concepts

di = UkDk d̂i

Computing backwards, d̂i = D−1k U−1k di

Columns of U are orthonormal ⇒ U−1 = U>

Dk is diagonal with entries σi ⇒ D−1k is diagonal D ′k with entries
1

σi

Hence d̂i = D ′kU
>
k di
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Query processing using LSI

Given a query q, represent in transformed space as q̂

Treating query as a document, apply the same transformation as for
documents

I d̂i = D ′
kU

>
k di

I q̂ = D ′
kU

>
k q

Now compare q̂ with each d̂i using cosine similarity

Returned ranked list of documents

Madhavan Mukund Data Mining and Machine Learning Lecture 23, Jan–Apr 2020 11 / 14



Dimensionality reduction

In general, SVD allows us to work with a lower dimensional version of
input

Principal Component Anaylsis — transforms d-dimensional input to
k-dimensional input by projecting on first k right singular vectors

Example: PCA projection of blue points in 3D to black points in 2D
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Dimensionality reduction . . .

Unsupervised preprocessing technique — may make later steps easier,
like simplifying classification boundaries

Swiss roll dataset: dimensionality reduction helps

Swiss roll dataset: dimensionality reduction does not help
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Summary

Singular Value Decomposition (SVD) finds best fit k-dimensional
subspace for any matrix M

In IR, it can help enhance the vector space model to handle problems
like synonymy and polysemy — Latent Semantic Indexing

Principal Component Analysis uses SVD for dimensionality reduction

Unsupervised technique — often helps simplify the problem, but may
not
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