Data Mining and Machine Learning

Madhavan Mukund

Lecture 23, Jan-Apr 2020
https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Queries and responses

Two classic problems in natural languages
Synonymy Different words for the same concept

- \{car, automobile\}, \{picture, image, photo\}

Polysemy Words have multiple meanings

- Jaguar the car, vs jaguar the animal

Vector space representation does not tackle these problems

- Recall, cosine similarity between query q and document $d, q \cdot d$
- Synonymy leads to underestimating $q \cdot d-q$ and d use different words for same concept
- Polysemy leads to overestimating $q \cdot d$ - same word has different interpretation in q and d

A concept space

- Ideally, the building blocks of documents are concepts
- Different words may map to the same concept - synonymy
- The same word may map to multiple concepts - polysemy
- Transform document representation from vector over terms to vector over concepts
- In the language of linear algebra, find an alternate basis for document space
- Quantify correlation between words and concepts

Singular Value Decomposition (SVD)

- Term-document matrix M, dimensions $n \times d$
- Rows are terms, columns are documents
- M[i,j] is TF-IDF score for term i in document j
- Decompose M as $U D V^{\top}$
- D is a $k \times k$ diagonal matrix, positive real entries
- U is $n \times k, V$ is $d \times k$
- Columns of U, V are orthonormal - unit vectors, mutually orthogonal
- Interpretation
- Columns of V correspond to new abstract concepts
- Rows of U describe decomposition of terms across concepts
- For columns \mathbf{u}_{i} of U and \mathbf{v}_{i} of $V, \mathbf{u}_{i} \cdot \mathbf{v}_{i}^{\top}$ is an $n \times d$ matrix, like M
- $\mathbf{u}_{i} \cdot \mathbf{v}_{i}^{\top}$ describes components of rows of M along direction \mathbf{v}_{i}

Singular vectors

- Unit vectors passing through the origin
- Want to find "best" k singular vectors to represent concept space
- Suppose we project $\mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i d}\right)$ onto v through origin

- Minimizing distance of \mathbf{a}_{i} from v is equivalent to maximizing the projection of \mathbf{a}_{i} onto v
- Length of the projection is $\mathrm{a}_{i} \cdot \mathbf{v}$

Singular vectors ...

- Sum of squares of lengths of projections of all rows in M onto v $|M v|^{2}$
- First singular vector - unit vector through origin that maximizes the sum of projections of all rows in M

$$
\mathbf{v}_{1}=\arg \max _{|\mathbf{v}|=1}|M \mathbf{v}|
$$

- Second singular vector - unit vector through origin, perpendicular to \mathbf{v}_{1}, that maximizes the sum of projections of all rows in M

$$
\mathbf{v}_{2}=\arg \max _{\mathbf{v} \perp \mathbf{v}_{1} ;|\mathbf{v}|=1}|M \mathbf{v}|
$$

- Third singular vector - unit vector through origin, perpendicular to $\mathbf{v}_{1}, \mathbf{v}_{2}$, that maximizes the sum of projections of all rows in M

$$
\mathbf{v}_{3}=\arg \max _{\mathbf{v} \perp \mathbf{v}_{1}, \mathbf{v}_{2} ;|\mathbf{v}|=1}|M \mathbf{v}|
$$

Singular vectors ...

- With each singular vector \mathbf{v}_{j}, associated singular value is $\sigma_{j}=\left|M \mathbf{v}_{j}\right|$
- Repeat r times till $\max _{\mathbf{v} \perp \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} ;|\mathbf{v}|=1}|M \mathbf{v}|=0$
- r turns out to be the rank of M
- Vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ are orthonormal right singular vectors
- Our greedy strategy provably produces "best-fit" dimension r subspace for M
- Dimension r subspace that maximizes content of M projected onto it
- Corresponding left singular vectors are given by $\mathbf{u}_{i}=\frac{1}{\sigma_{i}} M \mathbf{v}_{i}$
- Can show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ are also orthonormal

Singular Value Decomposition

- M, dimension $n \times d$, of rank r uniquely decomposes as $M=U D V$
- $V=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}\end{array}\right]$ are the right singular vectors
- D is a diagonal matrix with $D[i, i]=\sigma_{i}$, the singular values
- $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r}\end{array}\right]$ are the left singular vectors

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing $-\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$
- Suppose we retain only k largest ones
- We have
- Matrix of first k right singular vectors $V_{k}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k}\end{array}\right]$,
- Corresponding singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$
- Matrix of k left singular vectors $U_{k}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k}\end{array}\right]$
- Let D_{k} be the $k \times k$ diagonal matrix with entries $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$
- Then $U_{k} D_{k} V_{k}^{\top}$ is the best fit rank- k approximation of M
- In other words, by truncating the SVD, we can focus on k most significant concepts implicit in M

Latent Semantic Indexing

- Term-document matrix $M_{n \times d}$ with rank-k SVD $U_{k} D_{k} V_{k}^{\top}$
- $M_{k}=U_{k} D_{k} V_{k}^{\top}$ is the reduced term-document matrix
- Column i of M_{k} is a document \mathbf{d}_{i} over original terms
- Column i of V_{k}^{\top} is a transformed document $\widehat{\mathbf{d}}_{i}$
- $\widehat{\mathbf{d}}_{i}$ is a representation of \mathbf{d}_{i} in terms of k new abstract concepts
- $\mathbf{d}_{i}=U_{k} D_{k} \widehat{\mathbf{d}}_{i}$
- Computing backwards, $\widehat{\mathbf{d}}_{i}=D_{k}^{-1} U_{k}^{-1} \mathbf{d}_{i}$
- Columns of U are orthonormal $\Rightarrow U^{-1}=U^{\top}$
- D_{k} is diagonal with entries $\sigma_{i} \Rightarrow D_{k}^{-1}$ is diagonal D_{k}^{\prime} with entries $\frac{1}{\sigma_{i}}$
- Hence $\widehat{\mathbf{d}}_{i}=D_{k}^{\prime} U_{k}^{\top} \mathbf{d}_{i}$

Query processing using LSI

- Given a query q, represent in transformed space as $\widehat{\mathbf{q}}$
- Treating query as a document, apply the same transformation as for documents
- $\hat{\mathbf{d}}_{i}=D_{k}^{\prime} U_{k}^{\top} \mathbf{d}_{i}$
- $\widehat{\mathbf{q}}=D_{k}^{\prime} U_{k}^{\top} \mathbf{q}$
- Now compare $\widehat{\mathbf{q}}$ with each $\widehat{\mathbf{d}}_{i}$ using cosine similarity
- Returned ranked list of documents

Dimensionality reduction

- In general, SVD allows us to work with a lower dimensional version of input
- Principal Component Anaylsis - transforms d-dimensional input to k-dimensional input by projecting on first k right singular vectors
- Example: PCA projection of blue points in 3D to black points in 2D

Dimensionality reduction...

- Unsupervised preprocessing technique - may make later steps easier, like simplifying classification boundaries
- Swiss roll dataset: dimensionality reduction helps

- Swiss roll dataset: dimensionality reduction does not help

Summary

- Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any matrix M
- In IR, it can help enhance the vector space model to handle problems like synonymy and polysemy - Latent Semantic Indexing
- Principal Component Analysis uses SVD for dimensionality reduction
- Unsupervised technique - often helps simplify the problem, but may not

