Data Mining and Machine Learning

Madhavan Mukund

Lecture 23, Jan-Apr 2020 https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Queries and responses

Two classic problems in natural languages
Synonymy Different words for the same concept

{car, automobile}, {picture, image, photo}

Polysemy Words have multiple meanings

Jaguar the car, vs jaguar the animal

Vector space representation does not tackle these problems

- Recall, cosine similarity between query q and document d, $q \cdot d$
- Synonymy leads to underestimating q · d q and d use different words for same concept
- Polysemy leads to overestimating q · d same word has different interpretation in q and d

A concept space

- Ideally, the building blocks of documents are concepts
 - Different words may map to the same concept synonymy
 - The same word may map to multiple concepts polysemy
- Transform document representation from vector over terms to vector over concepts
 - In the language of linear algebra, find an alternate basis for document space
- Quantify correlation between words and concepts

Singular Value Decomposition (SVD)

- Term-document matrix M, dimensions $n \times d$
 - Rows are terms, columns are documents
 - ► M[i, j] is TF-IDF score for term i in document j
- Decompose M as UDV^{\top}
 - D is a $k \times k$ diagonal matrix, positive real entries
 - U is $n \times k$, V is $d \times k$
 - ► Columns of *U*, *V* are orthonormal unit vectors, mutually orthogonal
- Interpretation
 - Columns of V correspond to new abstract concepts
 - Rows of U describe decomposition of terms across concepts
 - For columns \mathbf{u}_i of U and \mathbf{v}_i of V, $\mathbf{u}_i \cdot \mathbf{v}_i^{\top}$ is an $n \times d$ matrix, like M
 - $\mathbf{u}_i \cdot \mathbf{v}_i^{\top}$ describes components of rows of M along direction \mathbf{v}_i

Singular vectors

- Unit vectors passing through the origin
- Want to find "best" k singular vectors to represent concept space
- Suppose we project $\mathbf{a}_i = (a_{i1}, a_{i2}, \dots, a_{id})$ onto **v** through origin

- Minimizing distance of a_i from v is equivalent to maximizing the projection of a_i onto v
- Length of the projection is a_i · v

Madhavan Mukund

Singular vectors ...

- Sum of squares of lengths of projections of all rows in M onto $\mathbf{v} = |M\mathbf{v}|^2$
- First singular vector unit vector through origin that maximizes the sum of projections of all rows in *M*

 $\mathbf{v}_1 = rg\max_{|\mathbf{v}|=1} |M\mathbf{v}|$

Second singular vector — unit vector through origin, perpendicular to v₁, that maximizes the sum of projections of all rows in M

$$\mathbf{v}_2 = rg\max_{\mathbf{v}\perp\mathbf{v}_1; \ |\mathbf{v}|=1} |M\mathbf{v}|$$

• Third singular vector — unit vector through origin, perpendicular to \mathbf{v}_1 , \mathbf{v}_2 , that maximizes the sum of projections of all rows in M

$$\mathbf{v}_3 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2; \ |\mathbf{v}|=1} |M\mathbf{v}|$$

Madhavan Mukund

Singular vectors ...

- With each singular vector \mathbf{v}_j , associated singular value is $\sigma_j = |M\mathbf{v}_j|$
- Repeat r times till $\max_{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r; \ |\mathbf{v}|=1} |M\mathbf{v}| = 0$
 - r turns out to be the rank of M
 - Vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ are orthonormal right singular vectors
- Our greedy strategy provably produces "best-fit" dimension r subspace for M
 - Dimension r subspace that maximizes content of M projected onto it
- Corresponding left singular vectors are given by $\mathbf{u}_i = \frac{1}{\sigma_i} M \mathbf{v}_i$
- \bullet Can show that $\{u_1, u_2, \ldots, u_r\}$ are also orthonormal

Singular Value Decomposition

- *M*, dimension $n \times d$, of rank *r* uniquely decomposes as $M = UDV^{\top}$
 - $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r]$ are the right singular vectors
 - D is a diagonal matrix with $D[i, i] = \sigma_i$, the singular values
 - $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r]$ are the left singular vectors

Rank-k approximation

- *M* has rank *r*, SVD gives rank *r* decomposition
- Singular values are non-increasing $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$
- Suppose we retain only k largest ones
- We have
 - Matrix of first k right singular vectors $V_k = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$,
 - Corresponding singular values $\sigma_1, \sigma_2, \ldots, \sigma_k$
 - Matrix of k left singular vectors $U_k = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$
- Let D_k be the $k \times k$ diagonal matrix with entries $\sigma_1, \sigma_2, \ldots, \sigma_k$
- Then $U_k D_k V_k^{\top}$ is the best fit rank-k approximation of M
- In other words, by truncating the SVD, we can focus on k most significant concepts implicit in M

Latent Semantic Indexing

- Term-document matrix $M_{n \times d}$ with rank-k SVD $U_k D_k V_k^{\top}$
- $M_k = U_k D_k V_k^{\top}$ is the reduced term-document matrix
 - Column *i* of M_k is a document d_i over original terms
 - Column *i* of V_k^{\top} is a transformed document $\hat{\mathbf{d}}_i$
 - $\widehat{\mathbf{d}}_i$ is a representation of \mathbf{d}_i in terms of k new abstract concepts
- $\mathbf{d}_i = U_k D_k \widehat{\mathbf{d}}_i$
- Computing backwards, $\hat{\mathbf{d}}_i = D_k^{-1} U_k^{-1} \mathbf{d}_i$
- Columns of U are orthonormal $\Rightarrow U^{-1} = U^{\top}$
- D_k is diagonal with entries $\sigma_i \Rightarrow D_k^{-1}$ is diagonal D'_k with entries $\frac{1}{\sigma_i}$
- Hence $\widehat{\mathbf{d}}_i = D_k^{\prime} U_k^{\top} \mathbf{d}_i$

Query processing using LSI

- Given a query q, represent in transformed space as $\widehat{\mathbf{q}}$
- Treating query as a document, apply the same transformation as for documents
 - $\bullet \ \widehat{\mathbf{d}}_i = D_k' U_k^\top \mathbf{d}_i$
 - $\blacktriangleright \ \widehat{\mathbf{q}} = D_k' U_k^\top \mathbf{q}$
- Now compare $\hat{\mathbf{q}}$ with each $\hat{\mathbf{d}}_i$ using cosine similarity
- Returned ranked list of documents

Dimensionality reduction

- In general, SVD allows us to work with a lower dimensional version of input
- Principal Component Anaylsis transforms *d*-dimensional input to *k*-dimensional input by projecting on first *k* right singular vectors
- Example: PCA projection of blue points in 3D to black points in 2D

Madhavan Mukund

Dimensionality reduction ...

- Unsupervised preprocessing technique may make later steps easier, like simplifying classification boundaries
- Swiss roll dataset: dimensionality reduction helps

• Swiss roll dataset: dimensionality reduction does not help

Madhavan Mukund

Data Mining and Machine Learning

Summary

- Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any matrix M
- In IR, it can help enhance the vector space model to handle problems like synonymy and polysemy Latent Semantic Indexing
- Principal Component Analysis uses SVD for dimensionality reduction
- Unsupervised technique often helps simplify the problem, but may not