
Data Mining and Machine Learning

Madhavan Mukund

Lecture 21, Jan–Apr 2020
https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Information Retrieval (IR)

Query a corpus of text documents

Requirement is an “information need”

Articulate as a “query”, using some fixed syntax

I How effectively does the query capture the requirement?

Response is a (ranked) list of documents from the corpus

I Does this response answer the information need?

IR traditionally used to effectively index published material

I Library cataloguing

I Law: index case histories to look up legal precedents

Modern context: web search

I Corpus is all webpages on internet

I Query is free text in a search box

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 2 / 15

Information Retrieval (IR)

Preprocessing for quick response

Traditional IR focussed on indexing metadata

I Infeasible to index contents manually

With electronic documents we can index content

I Maintain data structures that relate query terms to documents

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 3 / 15

Term-Document matrix

Recall, set of words document model
I Vocabulary V , terms of interest

F “Terms” include words, but also part numbers, proper names, . . .

I Each document d is a subset of V

Term-document matrix TD
I Rows are terms, columns are documents

I TD[i , j] = 1 if term i occurs in document j

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 4 / 15

Querying a term-document matrix

Assume a query is a list of key words

For each query word w , return documents marked 1 in the row for w

Reduced term-document matrix

I Retain rows for words in query

I Retain columns (documents) where at least one query word has an
entry 1

Can intepret list of query words as conjunction or disjunction

I Conjunction: Return intersection of document lists for individual words

I Disjunction: Return union of document lists for individual words

I Perform bitwise and/or down each column (document)

Answer all boolean queries

I Negation is also conceptually easy — complement each entry

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 5 / 15

Postings lists

Term-document matrix is sparse — most entries are 0
I Even more so if documents are webpages — typically 2000 words or

less in all, most words in V are not present

Collapse information using inverted index — postings list
I Each document has a unique ID

I Each term is linked to list of documents where it occurs, in sorted
order of IDs

Vocabulary Postings

Adjacency list vs adjacency matrix representation of a sparse graph

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 6 / 15

Manipulating postings lists

Each posting list is a sorted list

Can merge two sorted lists into a single sorted list in one pass —
union of the lists

Variations on merge

I Intersection of the two lists

I List difference – items in first list but not in second list

Query is w1w2

I Documents that contain both w1 and w2 — intersection merge

I Documents that contain both w1 or w2 — union merge

Negation is expensive

Relative complement more useful, corresponds to list difference

I Documents that contain w1 but do not contain w2

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 7 / 15

Controlling the vocabulary

Remove stop words

I Common words like the, and, is, . . .

I Occur in most documents, not useful to distinguish

I Limit the size of the vocabulary to reduce postings lists

Web search engines prefer to retain stop words

I Computational cost can be managed

I Useful to match phrases with stop words — “To be or not to be”

Normalization — merging variants of a word to common form

I Stemming — syntactic, chop down a word to substring

F Replace, replacing, replacement 7→ replac

I Lemmatization — semantic, represent words by root form

F Is, are, were, . . . 7→ be

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 8 / 15

Ranked retrieval

Search engines return documents ranked by relevance

I Google’s main innovation was an effective ranking mechanism

Postings lists can only give us a set of unranked documents

Need extra information to rank

Zones of a document — title, author, abstract, body, . . .

I Parametric (zone) index — separate postings lists for each zone

I Merge zone indices by adding zone information to posting

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 9 / 15

Ranked retrieval . . .

Query interface may allow query by zone

Use weighted zone score to rank responses

I Zones i ∈ {1, 2, . . . , k}, si = 1 if term appears in zone i , 0 otherwise

I Return weighted sum
k∑

i=1

gi si

I Learn weights gi using regression — manually labelled data of relevant
responses to queries

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 10 / 15

Beyond the boolean (set-of-words) document model

Frequency of occurrence of term t in document d is also important

I Higher frequency indicates more relevance

Term frequency : tft,d — how often t occurs in d

Terms that occur in many documents are not useful (stop words)

I Term t occurs in nt documents out of N

I Usefulness of t is inversely proportional nt/N

Inverse document frequency : idft = log(N/nt)

TF-IDF score of t wrt d = tft,d · idft

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 11 / 15

TF-IDF scores

Postings now record TF-IDF scores
I t → {d1 : tft,d1 · idft , d2 : tft,d2 · idft , . . .}

idft is independent of document, so factor out of postings, each
posting only has tft,d

I t → idft idft , {d1 : tft,d1 tft,d1 , d2 : tft,d2 , . . .}

I Compute TF-IDF score by multiplying idft , tft,dj

What if we duplicate the content?
I Copy-pasting content 1000 times boosts TF-score by 1000!

Traditional IR
I Books published after editing, review — trustworthy content

IR for Internet
I Internet documents are self-published, unverified

I Economic incentive to boost rankings through fraudulent means

I Ranking algorithms should try not to be fooled
Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 12 / 15

Vector space model

Each document is a vector over terms — component i is TF-IDF
score for term ti

Compare documents in terms of direction

I d1 · d2 = |d1||d2| cos θ

I cos θ =
d1 · d2
|d1||d2|

measures similarity

Direction is unaffected by duplication of content — only magnitude
changes

I If d2 is 1000 copies of d1, cos θ = 1

Search engine can aggregate query responses

I Collapse similar documents as “. . . (5 more like these)”

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 13 / 15

Queries in the vector space model

Treat the query q as a very short document

For each document di , compute cos θi between q and di

Rank by value of cos θi

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 14 / 15

Summary

Precompute term-document information to answer IR queries in
set-of-words document model

I Postings lists are more compact than term-document matrix

Boolean queries are easy to answer using this information

Vocabulary can be controlled using stop words, stemming,
lemmatization

Can use weighted zone index for ranked retrieval

TF-IDF model allows us to account for word frequencies

Vector space model — cosine similarity

I Treat query and document as vectors and compare alignment

I Can also detect similar documents, group related responses

Madhavan Mukund Data Mining and Machine Learning Lecture 21, Jan–Apr 2020 15 / 15

