Data Mining and Machine Learning

Madhavan Mukund

Lecture 21, Jan-Apr 2020 https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Information Retrieval (IR)

- Query a corpus of text documents
- Requirement is an "information need"
- Articulate as a "query", using some fixed syntax
 - How effectively does the query capture the requirement?
- Response is a (ranked) list of documents from the corpus
 - Does this response answer the information need?
- IR traditionally used to effectively index published material
 - Library cataloguing
 - Law: index case histories to look up legal precedents
- Modern context: web search
 - Corpus is all webpages on internet
 - Query is free text in a search box

Information Retrieval (IR)

- Preprocessing for quick response
- Traditional IR focussed on indexing metadata
 - Infeasible to index contents manually

```
Library of Congress Cataloging-in-Publication Data
Kozen, Dexter, 1951-
Automata and computability/Dexter C. Kozen.
p. cm. – (Undergraduate texts in computer science)
Includes bibliographical references and index.
ISBN 0-387-94907-0 (hardcover: alk. paper)
1. Machine theory. 2. Computable functions. I. Title.
II. Series.
QA267.K69 1997
511.3 – dc21 96-37409
```

- With electronic documents we can index content
 - Maintain data structures that relate query terms to documents

Term-Document matrix

- Recall, set of words document model
 - Vocabulary V, terms of interest
 - ★ "Terms" include words, but also part numbers, proper names, ...
 - Each document d is a subset of V
- Term-document matrix TD
 - Rows are terms, columns are documents
 - TD[i, j] = 1 if term *i* occurs in document *j*

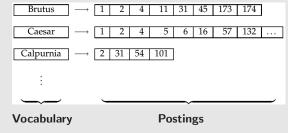
	Antony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Antony	ī	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

Querying a term-document matrix

- Assume a query is a list of key words
- For each query word w, return documents marked 1 in the row for w
- Reduced term-document matrix
 - Retain rows for words in query
 - Retain columns (documents) where at least one query word has an entry 1
- Can intepret list of query words as conjunction or disjunction
 - Conjunction: Return intersection of document lists for individual words
 - Disjunction: Return union of document lists for individual words
 - Perform bitwise and/or down each column (document)
- Answer all boolean queries
 - Negation is also conceptually easy complement each entry

Postings lists

- Term-document matrix is sparse most entries are 0
 - Even more so if documents are webpages typically 2000 words or less in all, most words in V are not present
- Collapse information using inverted index postings list
 - Each document has a unique ID
 - Each term is linked to list of documents where it occurs, in sorted order of IDs



Adjacency list vs adjacency matrix representation of a sparse graph

Madhavan Mukund	Data Mining and Machine Learning	Lecture 21, Jan–Apr 2020	6/1
-----------------	----------------------------------	--------------------------	-----

Manipulating postings lists

- Each posting list is a sorted list
- Can merge two sorted lists into a single sorted list in one pass union of the lists
- Variations on merge
 - Intersection of the two lists
 - List difference items in first list but not in second list
- Query is $w_1 w_2$
 - Documents that contain both w_1 and w_2 intersection merge
 - Documents that contain both w_1 or w_2 union merge
- Negation is expensive
- Relative complement more useful, corresponds to list difference
 - Documents that contain w_1 but do not contain w_2

Madhavan Mukund

Data Mining and Machine Learning

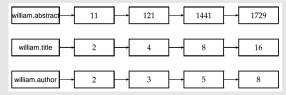
Controlling the vocabulary

• Remove stop words

- Common words like the, and, is, ...
- Occur in most documents, not useful to distinguish
- Limit the size of the vocabulary to reduce postings lists
- Web search engines prefer to retain stop words
 - Computational cost can be managed
 - Useful to match phrases with stop words "To be or not to be"
- Normalization merging variants of a word to common form
 - Stemming syntactic, chop down a word to substring
 - ★ Replace, replacing, replacement \mapsto replac
 - Lemmatization semantic, represent words by root form
 - ★ Is, are, were, $\ldots \mapsto be$

Ranked retrieval

- Search engines return documents ranked by relevance
 - Google's main innovation was an effective ranking mechanism
- Postings lists can only give us a set of unranked documents
- Need extra information to rank
- Zones of a document title, author, abstract, body, ...
 - Parametric (zone) index separate postings lists for each zone



Merge zone indices by adding zone information to posting

Madhavan Mukund

Ranked retrieval ...

• Query interface may allow query by zone

Search	Library catalog 🔻	
	Library catalog	
Advance	Title Author Subject	
Home	ISBN Series	
Welcor (<mark>OPAC</mark>)		nai Mathematical Institute's Online Public Access Catalog

- Use weighted zone score to rank responses
 - ▶ Zones $i \in \{1, 2, ..., k\}$, $s_i = 1$ if term appears in zone i, 0 otherwise
 - Return weighted sum $\sum_{i=1}^{k} g_i s_i$
 - Learn weights g_i using regression manually labelled data of relevant responses to queries

Beyond the boolean (set-of-words) document model

- Frequency of occurrence of term t in document d is also important
 - Higher frequency indicates more relevance
- Term frequency : $tf_{t,d}$ how often t occurs in d
- Terms that occur in many documents are not useful (stop words)
 - Term t occurs in n_t documents out of N
 - Usefulness of t is inversely proportional n_t/N
- Inverse document frequency : $idf_t = \log(N/n_t)$
- TF-IDF score of t wrt $d = tf_{t,d} \cdot idf_t$

TF-IDF scores

- Postings now record TF-IDF scores
 - $\blacktriangleright t \rightarrow \{d_1: tf_{t,d_1} \cdot idf_t, d_2: tf_{t,d_2} \cdot idf_t, \ldots\}$
- *idf_t* is independent of document, so factor out of postings, each posting only has *tf_{t,d}*
 - $\blacktriangleright t \rightarrow \boxed{idf_t} idf_t , \{d_1 : \boxed{tf_{t,d_1}} tf_{t,d_1} , d_2 : tf_{t,d_2}, \ldots\}$
 - ► Compute TF-IDF score by multiplying *idf*_t, *tf*_{t,dj}
- What if we duplicate the content?
 - Copy-pasting content 1000 times boosts TF-score by 1000!
- Traditional IR
 - Books published after editing, review trustworthy content
- IR for Internet
 - Internet documents are self-published, unverified
 - Economic incentive to boost rankings through fraudulent means
 - Ranking algorithms should try not to be fooled

Madhavan Mukund

Data Mining and Machine Learning

Vector space model

- Each document is a vector over terms component *i* is TF-IDF score for term *t_i*
- Compare documents in terms of direction

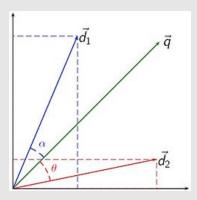
$$\bullet \ d_1 \cdot d_2 = |d_1||d_2|\cos\theta$$

•
$$\cos \theta = \frac{d_1 \cdot d_2}{|d_1||d_2|}$$
 measures similarity

- Direction is unaffected by duplication of content only magnitude changes
 - If d_2 is 1000 copies of d_1 , $\cos \theta = 1$
- Search engine can aggregate query responses
 - Collapse similar documents as "... (5 more like these)"

Queries in the vector space model

- Treat the query q as a very short document
- For each document d_i , compute $\cos \theta_i$ between q and d_i
- Rank by value of $\cos \theta_i$



Summary

- Precompute term-document information to answer IR queries in set-of-words document model
 - Postings lists are more compact than term-document matrix
- Boolean queries are easy to answer using this information
- Vocabulary can be controlled using stop words, stemming, lemmatization
- Can use weighted zone index for ranked retrieval
- TF-IDF model allows us to account for word frequencies
- Vector space model cosine similarity
 - Treat query and document as vectors and compare alignment
 - Can also detect similar documents, group related responses