Data Mining and Machine Learning

Madhavan Mukund

Lecture 20, Jan-Apr 2020 https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Limitations of classification models

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - $\star\,$ Sequence of models based on independent bootstrap samples
 - \star Use voting to get an overall classifier
- How can we cope with high bias?

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes
- Mistakes should be compensated across models in the ensemble
 - How to build a sequence of models, each biased a different way?
 - Again, we assume we have only one set of training data

Boosting

- Build a sequence of weak classifiers M₁, M₂, ..., M_n on inputs D₁, D₂, ..., D_n
 - ▶ A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D1
 - ▶ Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i
- Ensemble output
 - ▶ Individual classification outcomes are {-1,+1}
 - Unknown input x: ensemble outcome is weighted sum $\sum \alpha_i M_i(x)$
 - Check if weighted sum is negative/positive

• Initially, all data items have equal weight

AdaBoost(D, Y, BaseLeaner, k)
1. Initialize
$$D_1(w_i) \leftarrow 1/n$$
 for all i ;
2. for $t = 1$ to k do
3. $f_t \leftarrow BaseLearner(D_t)$;
4. $e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i)$;
5. if $e_t > \frac{1}{2}$ then
6. $k \leftarrow k-1$;
7. exit-loop
8. else
9. $\beta_t \leftarrow e_t / (1-e_t)$;
10 $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_t)) = y_i \\ 1 & \text{otherwise} \end{cases}$;
11. $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$
12. endif
13. endfor
14. $f_{final}(\mathbf{x}) \leftarrow \arg_{y \in Y} \sum_{t:f_t(\mathbf{x}) = y} \log \frac{1}{\beta_t}$

Data Mining and Machine Learning

- Initially, all data items have equal weight
- Build a new model and compute its weighted error

AdaBoost(D, Y, BaseLeaner, k) 1. Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 2. for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5 if $e_t > \frac{1}{2}$ then 6. $k \leftarrow k-1$; 7. exit-loop 8. else 9. $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_t)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11. 12. endif 13. endfor 14. $f_{final}(\mathbf{x}) \leftarrow \underset{v \in Y}{\operatorname{argmax}} \sum_{t \in (\mathbf{x}) = v} \log \frac{1}{\beta_t}$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%

AdaBoost(D, Y, BaseLeaner, k)
1. Initialize
$$D_1(w_i) \leftarrow 1/n$$
 for all i ;
2. for $t = 1$ to k do
3. $f_t \leftarrow BaseLearner(D_t)$;
4. $e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_t))\neq y_t} D_t(w_i)$;
5. **if** $e_t > \frac{1}{2}$ **then**
6. $k \leftarrow k - 1$;
7. exit-loop
8. **else**
9. $\beta_t \leftarrow e_t / (1 - e_t)$;
10 $D_{t+1}(w_t) \leftarrow D_t(w_t) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_t)) = y_t \\ 1 & \text{otherwise} \end{cases}$;
11. $D_{t+1}(w_t) \leftarrow \frac{D_{t+1}(w_t)}{\sum_{i=1}^n D_{t+1}(w_i)}$
12. endif
13. endfor
14. $f_{final}(\mathbf{x}) \leftarrow \underset{y \in Y}{argmax} \sum_{t:f_t(\mathbf{x}) = y} \log \frac{1}{\beta_t}$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2. for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5 if $e_t > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8. else 9. $\begin{array}{l} \beta_t \leftarrow e_t / (1 - e_t); \\ D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_t)) = y_i \\ 1 & \text{otherwise} \end{cases}$ 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11. 12. endif 13. endfor 14. $f_{final}(\mathbf{x}) \leftarrow \underset{v \in Y}{\operatorname{argmax}} \sum_{r \in \{v\}=v} \log \frac{1}{\beta_r}$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2. for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5 if $e_t > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8. else 9. $\begin{array}{l} \beta_t \leftarrow e_t / (1 - e_t); \\ D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases}$ 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11. 12. endif 13. endfor 14. $f_{final}(\mathbf{x}) \leftarrow \underset{y \in Y}{\operatorname{argmax}} \sum_{t: f_t(\mathbf{x}) = y} \log \frac{1}{\beta_t}$

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Verdict: weighted sum of individual scores — weights derived from error rate

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2. for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5 if $e_t > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8. else 9. $\beta_{t} \leftarrow e_{t} / (1 - e_{t});$ $D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{t})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$ 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11. 12. endif 13. endfor 14. $f_{final}(\mathbf{x}) \leftarrow \underset{v \in Y}{\operatorname{argmax}} \sum_{r \in f(\mathbf{x})=v} \log \frac{1}{\beta_r}$

Madhavan Mukund

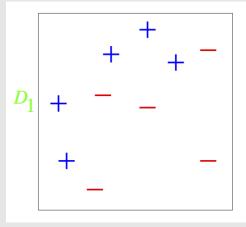
Data Mining and Machine Learning

Lecture 20, Jan–Apr 2020

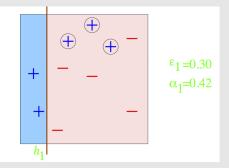
020 10/23

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - ▶ Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}
- Note that same model M may be picked in multiple iterations, assigned different weights α

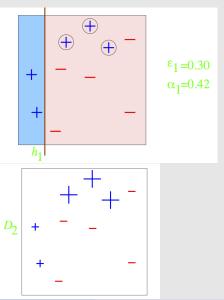
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights



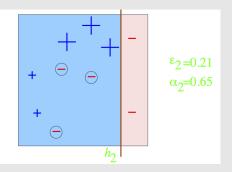
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line



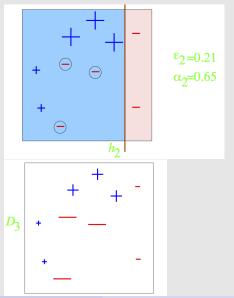
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs



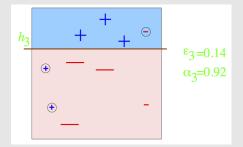
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line



- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs

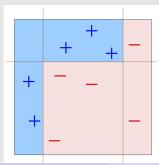


- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs
- Third separator: horizontal line



• Final classifier is weighted sum of three weak classifiers

Pictorially



Given a sample S of n labeled examples $\mathbf{x}_1, \ldots, \mathbf{x}_n$, initialize each example \mathbf{x}_i to have a weight $w_i = 1$. Let $\mathbf{w} = (w_1, \ldots, w_n)$.

For $t = 1, 2, ..., t_0$ do

Call the weak learner on the weighted sample $(S, \mathbf{w}),$ receiving hypothesis $h_t.$

Multiply the weight of each example that was misclassified by h_t by $\alpha = \frac{\frac{1}{2} + \gamma}{\frac{1}{2} - \gamma}$. Leave the other weights as they are.

End

Output the classifier $MAJ(h_1, \ldots, h_{t_0})$ which takes the majority vote of the hypotheses returned by the weak learner. Assume t_0 is odd so there is no tie.

Given a sample S of n labeled examples $\mathbf{x}_1, \ldots, \mathbf{x}_n$, initialize each example \mathbf{x}_i to have a weight $w_i = 1$. Let $\mathbf{w} = (w_1, \ldots, w_n)$.

For $t = 1, 2, \ldots, t_0$ do

Call the weak learner on the weighted sample $(S, \mathbf{w}),$ receiving hypothesis $h_t.$

Multiply the weight of each example that was misclassified by h_t by $\alpha = \frac{1}{2+\gamma}$. Leave the other weights as they are.

Madhavan Mukund

Data Mining and Machine Learning

γ -weak classifier

For any training dataset D, for any assignment of non-negative real weights w_i to $x_i \in D$, classifier correctly labels subset with weight at least $(\frac{1}{2} + \gamma) \sum_{i=1}^{n} w_i$

Theorem

Let *A* be a γ -weak classification algorithm. Let *D* be a training dataset of size *n*. Then $t_0 = O(\frac{1}{\gamma^2} \ln n)$ is sufficient for the boosted classifier $MAJ(h_1, h_2, \ldots, h_{t_0})$ to have training error zero.

For any training dataset D, a γ -weak classifier can be boosted to make correct predictions on all of D.

Proof

- Let *m* be the number of examples misclassified by final classifier
 - Majority classifier each such item misclassified at least $t_0/2$ times
 - Each item has weight at least $\alpha^{t_0/2}$
 - Total weight of misclassified items at least $m\alpha^{t_0/2}$
- Iteration t + 1, only items misclassifed by h_t are reweighted
 - γ -weak classifier total weight of misclassified items at most $\frac{1}{2} \gamma$
- weight(t) total weight at time t
 - Recall that $\alpha = \frac{\frac{1}{2} + \gamma}{\frac{1}{2} \gamma}$

weight $(t+1) \leq$

$$\alpha \left(\frac{1}{2} - \gamma\right) + \left(\frac{1}{2} + \gamma\right)$$

 $weight(t) \leq (1+2\gamma)weight(t)$

Proof

- weight(0) = n, so after t_0 iterations, $weight(t_0) \le n(1+2\gamma)^{t_0}$
- Total weight of misclassified items at least $m\alpha^{t_0/2}$, so $m\alpha^{t_0/2} \le n(1+2\gamma)^{t_0}$

• Rewrite
$$\alpha = \frac{\frac{1}{2} + \gamma}{\frac{1}{2} - \gamma}$$
 as $\alpha = \frac{1 + 2\gamma}{1 - 2\gamma}$

• $m\alpha^{t_0/2} \le n(1+2\gamma)^{t_0} \Rightarrow m \le n(1+2\gamma)^{t_0} \frac{(1-2\gamma)^{t_0/2}}{(1+2\gamma)^{t_0/2}}$ $\Rightarrow m \le n(1-2\gamma)^{t_0/2}(1+2\gamma)^{t_0/2} \Rightarrow m \le n(1-4\gamma^2)^{t_0/2} \Rightarrow$ $m \le n(1-4\gamma^2)^{t_0/2} \Rightarrow m \le n(1-4\gamma^2)^{t_0/2}$

• Since
$$1 - x \le e^{-x}$$
, $m \le n \left(e^{-4\gamma^2}\right)^{t_0/2} \Rightarrow m \le n e^{-2t_0\gamma^2}$

• If $t_0 > \frac{\ln n}{2\gamma^2}$, m < 1, so zero training error

Summary

- Boosting provably improves the performance of a biased classifier
- Adjust weights of incorrectly classified inputs to iteratively produce new classifiers that compensate for errors
- Can also do this to select best n of N diverse classifiers
 - Combining expert advice
- Variation: Combining sleeping experts
 - Each expert (classifier) need not classify all inputs
 - For each input, some experts may be "sleeping"