Data Mining and Machine Learning

Madhavan Mukund

Lecture 18, Jan-Apr 2020 https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Loss functions (costs) for neural networks

- So far, we have assumed mean sum-squared error as the loss function.
- Consider single neuron, two inputs $x = (x_1, x_2)$

$$C = \frac{1}{n} \sum_{i=1}^{n} (y_i - a_i)^2, \text{ where } a_i = \sigma(z_i) = \sigma(w_1 x_1^i + w_2 x_2^i + b)$$

• For gradient descent, we compute $\frac{\partial C}{\partial w_1}$, $\frac{\partial C}{\partial w_2}$, $\frac{\partial C}{\partial b}$

► For j = 1, 2, $\frac{\partial C}{\partial w_j} = \frac{2}{n} \sum_{i=1}^n (y_i - a_i) \cdot -\frac{\partial a_i}{\partial w_j} = \frac{2}{n} \sum_{i=1}^n (a_i - y_i) \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial w_j}$ $= \frac{2}{n} \sum_{i=1}^n (a_i - y_i) \sigma'(z_i) x_j^i$ $\frac{\partial C}{\partial b} = \frac{2}{n} \sum_{i=1}^n (a_i - y_i) \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial b} = \frac{2}{n} \sum_{i=1}^n (a_i - y_i) \sigma'(z_i)$

Loss functions ...

•
$$\frac{\partial C}{\partial w_j} = \frac{2}{n} \sum_{i=1}^n (a_i - y_i) \sigma'(z_i) x_j^i$$
, $\frac{\partial C}{\partial b} = \frac{2}{n} \sum_{i=1}^n (a_i - y_i) \sigma'(z_i)$
• Each term in $\frac{\partial C}{\partial w_1}$, $\frac{\partial C}{\partial w_2}$, $\frac{\partial C}{\partial b}$ is proportional to $\sigma'(z_i)$

- Ideally, gradient descent should take large steps when a y is large
 - σ(z) is flat at both extremes
 - If a is completely wrong, $a \approx (1 - y)$, we still have $\sigma'(z) \approx 0$
 - Learning is slow even when current model is far from optimal

Cross entropy

• A better loss function

$$C(a, y) = \begin{cases} -\ln(a), & \text{if } y = 1 \\ -\ln(1-a), & \text{if } y = 0 \end{cases}$$

- If $a \approx y$, $C(a, y) \approx 0$ in both cases
- If $a \approx 1 y$, $C(a, y) \rightarrow \infty$ in both cases
- Combine into a single equation

 $C(a, y) = -[y \ln(a) + (1 - y) \ln(1 - a)]$

- $y = 1 \Rightarrow$ second term vanishes, $C = -\ln(a)$
- $y = 0 \Rightarrow$ first term vanishes, $C = -\ln(1 a)$
- This is called cross entropy

Cross entropy and gradient descent

•
$$C = -[y \ln(\sigma(z)) + (1 - y) \ln(1 - \sigma(z))]$$

• $\frac{\partial C}{\partial w_j} = \frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial w_j} = -\left[\frac{y}{\sigma(z)} - \frac{1 - y}{1 - \sigma(z)}\right] \frac{\partial \sigma}{\partial w_j}$
 $= -\left[\frac{y}{\sigma(z)} - \frac{1 - y}{1 - \sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial w_j}$
 $= -\left[\frac{y}{\sigma(z)} - \frac{1 - y}{1 - \sigma(z)}\right] \sigma'(z)x_j$
 $= -\left[\frac{y(1 - \sigma(z)) - (1 - y)\sigma(z)}{\sigma(z)(1 - \sigma(z))}\right] \sigma'(z)x_j$

Cross entropy and gradient descent ...

•
$$\frac{\partial C}{\partial w_j} = -\left[\frac{y(1-\sigma(z))-(1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]\sigma'(z)x_j$$

• Recall that
$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

• Therefore,
$$\frac{\partial C}{\partial w_j} = -[y(1 - \sigma(z)) - (1 - y)\sigma(z)]x_j$$

 $= -[y - y\sigma(z) - \sigma(z) + y\sigma(z)]x_j$
 $= (\sigma(z) - y)x_j$
 $= (a - y)x_j$

• Similarly, $\frac{\partial C}{\partial b} = (a - y)$

- Thus, as we wanted, the gradient is proportional to a y
- The greater the error, the faster the learning rate

Cross entropy ...

• Overall,

•
$$\frac{\partial C}{\partial w_j} = \frac{1}{n} \sum_{i=1}^n (a_i - y_i) x_j$$

• $\frac{\partial C}{\partial b} = \frac{1}{n} \sum_{i=1}^n (a_i - y_i)$

- Cross entropy allows the network to learn faster when the model is far from the true one
- Other theoretical justifications to justify using cross entropy
 - Derive from goal of maximizing log-likelihood of model
 - Will be addressed in advanced ML course

Case study: Handwritten digits

• MNIST database has 1000 samples of handwritten digits {0,1,...,9}

• Assume input segmented as individual digits

Handwritten digits ...

- Each image is $28 \times 28 = 784$ pixels
- Each pixel is a grayscale value from 0.0 (white) to 1.0 (black)
- Building a neural network
 - Linearize the image row-wise, inputs are $x_1, x_2, \ldots, x_{784}$
 - Single hidden layer, with 15 nodes
 - Output layer has 10 nodes, a decision a_j for each digit $j \in \{0, 1, \dots, 9\}$
 - Final output is the maximum among these
 - ★ Naïvely, arg max a_j
 - ***** Softmax : $\arg \max_{j} \frac{e^{a_{j}}}{\sum_{i} e^{a_{j}}}$

Smooth approximation to arg max

Handwritten digits ...

Neural network to recognize handwritten digits

Handwritten digits ...

- Intuitively, the internal node recognize features
- Combinations of features identify digits
- Hypothetically, suppose first four hidden neurons focus on four quadrants of image.

• This combination favours the verdict 0

Identifying images

- Suppose we have a network that can recognize hand-written $\{0,1,\ldots,9\}$ of size 28×28
- We want to find these images in a larger image
- $\bullet\,$ Slide a window of size 28 $\times\,$ 28 over the larger image
- Apply the original network to each window
- Pool the results to see if the digit occurs anywhere in the image

Convolutional neural network

• Each "window" connects to a different node in the first hidden layer.

input neurons

000000000000000000000000000000000000000	000000000000000000000000000000000000000	first hidden layer
00000	000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000000000000000000000000000000000	
000000000000000000000000000000000000000		
input n	eurone	
input n	eurons	first hidden laver
input n	eurons 000000000000000000000000000000000000	first hidden layer
input n	eurons 000000000000000000000000000000000000	first hidden layer
input n 000000000000000000000000000000000000	eurons	first hidden layer
input n	eurons	first hidden layer
input n 00000 00000 00000 00000	eurons	first hidden layer
input n 00000	eurons	first hidden layer
input n 00000	eurons	first hidden layer
input n 00000	e urons	first hidden layer
input n	eurons	first hidden layer
input n 00000		first hidden layer
input n	eurons	first hidden layer
input n 000000000000000000000000000000000000	eurons	first hidden layer
input n	eurons	first hidden layer
input n	eurons	first hidden layer
input n	eurons	first hidden layer
input n 000000000000000000000000000000000000	CUPONS	first hidden layer
input n	eurons	first hidden layer
input n	CUFONS	first hidden layer
input n	CUITONS COULDE C	first hidden layer

Madhavan Mukund

Data Mining and Machine Learning

Convolutional neural network

- Sliding window performs a convolution of the window network function across the entire input
 - Convolutional Neural Network (CNN)
- Combine these appropriately e.g., max-pool partitions features into small regions, say 2 × 2, and takes the maximum across each region

hidden neurons (output from feature map)			
	max-pooling units		

Convolutional neural network

Example

- Input is 28×28 MNIST image
- $\bullet\,$ Three features, each examines a 5 $\times\,$ 5 window
 - Construct a separate hidden layer for each feature
 - \blacktriangleright Each feature produces a hidden layer with 24 \times 24 nodes
- Max-pool of size 2 \times 2 partitions each feature layer into 12 \times 12
 - Second hidden layer
- Finally, three max-pool layers from three hidden features are combined into 10 indicator output nodes for $\{0, 1, \dots, 9\}$

Convolutional neural network ...

Network structure for this example

- Input layer is 28×28
- $\bullet\,$ Three hidden feature layers, each 24 $\times\,$ 24
- $\bullet\,$ Three max-pool layers, each 12×12
- 10 output nodes

Deep learning

- Hidden layers extract "features" from the input
- Individual features can be combined into more complex ones
- Networks with multiple hidden layers are called deep neural networks
 - How deep is deep?
 - Originally even 4 layers was deep.
 - Recently, 100+ layers have been used
- The main challenge is learning the weights
 - Vanishing gradients
 - Enormously large training data