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Loss functions (costs) for neural networks

@ So far, we have assumed mean sum-squared error as the loss function.

o Consider single neuron, two inputs x = (x, x2)
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Loss functions . ..
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@ Each term in gvfl gvz g—g is proportional to ¢/(z;)

o ldeally, gradient descent should take large steps when a — y is large

sigmoid function

> o(z) is flat at both 10-

extremes
0.8

» If a is completely wrong,
~ (1 —y), we still have

0.6

o'(z) =0 04|
> Learning is slow even when 02+
current model is far from 00 : R . .
Optlma| 4 -3 2 -1 0 1 2 3 4
Z

Madhavan Mukund Data Mining and Machine Learning Lecture 18, Jan—Apr 2020 3/17



Cross entropy

@ A better loss function

] —In(a), ify=1
Cly)= { _in(l—a), ify=0

» Ifar y, C(a,y)~ 0 in both cases
» Ifar~1—y, C(a,y) — oo in both cases

@ Combine into a single equation
C(a,y) = —=[yIn(a) + (1 = y)In(1 — a)]

» y =1 = second term vanishes, C = — In(a)
» y = 0 = first term vanishes, C = —In(1 — a)

@ This is called cross entropy
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Cross entropy and gradient descent

@ C=—[yIn(a(2)) + (1 —y)In(1—0c(2))]
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Cross entropy and gradient descent . ..

0C _ _[y(A=0(2)) = (1 =y)o(2) o (2)

ow; a(z)(1 —a(2))

@ Recall that 0/(z) = o(2)(1 — o(2))

@ Therefore, gvcv; =—[y(1 —o(2)) — (1 = y)o(2)]x

@ Similarly, g—g =(a—y)

@ Thus, as we wanted, the gradient is proportional to a — y

@ The greater the error, the faster the learning rate
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Cross entropy ...

@ Overall,
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@ Cross entropy allows the network to learn faster when the model is far
from the true one

@ Other theoretical justifications to justify using cross entropy

» Derive from goal of maximizing log-likelihood of model
» Will be addressed in advanced ML course
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Case study: Handwritten digits

@ MNIST database has 1000 samples of handwritten digits {0,1,. .., 9}
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@ Assume input segmented as individual digits



Handwritten digits . ..

@ Each image is 28 x 28 = 784 pixels
e Each pixel is a grayscale value from 0.0 (white) to 1.0 (black)

@ Building a neural network

> Linearize the image row-wise, inputs are xi, X, . . ., X784

» Single hidden layer, with 15 nodes

» Output layer has 10 nodes, a decision a; for each digit j € {0,1,...,9}

» Final output is the maximum among these

* Naively, arg max a;
J

e’
* Softmax : arg max

J Z,’ e’

Smooth approximation to arg max
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Handwritten digits . ..

@ Intuitively, the internal node recognize features

@ Combinations of features identify digits

@ Hypothetically, suppose first four hidden neurons focus on four
quadrants of image.

r ! C 2

@ This combination favours the verdict 0
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|dentifying images

@ Suppose we have a network that can recognize hand-written
{0,1,...,9} of size 28 x 28

@ We want to find these images in a larger image
@ Slide a window of size 28 x 28 over the larger image
@ Apply the original network to each window

@ Pool the results to see if the digit occurs anywhere in the image
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Convolutional neural network

@ Each “window” connects to a different node in the first hidden layer.
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Convolutional neural network . ..

@ Sliding window performs a convolution of the window network
function across the entire input

» Convolutional Neural Network (CNN)

@ Combine these appropriately — e.g., max-pool partitions features into
small regions, say 2 x 2, and takes the maximum across each region

hidden neurons {output from feature map)

max-pooling units

00 30
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Convolutional neural network . ..

Example
@ Input is 28 x 28 MNIST image

@ Three features, each examines a 5 x 5 window

» Construct a separate hidden layer for each feature

» Each feature produces a hidden layer with 24 x 24 nodes

@ Max-pool of size 2 x 2 partitions each feature layer into 12 x 12

» Second hidden layer

@ Finally, three max-pool layers from three hidden features are
combined into 10 indicator output nodes for {0,1,...,9}
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Convolutional neural network . ..

Network structure for this example

o Input layer is 28 x 28
@ Three hidden feature layers, each 24 x 24
@ Three max-pool layers, each 12 x 12
@ 10 output nodes
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Deep learning

@ Hidden layers extract “features” from the input
@ Individual features can be combined into more complex ones

@ Networks with multiple hidden layers are called deep neural networks

» How deep is deep?
» Originally even 4 layers was deep.

> Recently, 100+ layers have been used

@ The main challenge is learning the weights

» Vanishing gradients

» Enormously large training data

Madhavan Mukund Data Mining and Machine Learning Lecture 18, Jan—Apr 2020 17 /17



