Data Mining and Machine Learning

Madhavan Mukund

Lecture 18, Jan-Apr 2020
https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Loss functions (costs) for neural networks

- So far, we have assumed mean sum-squared error as the loss function.
- Consider single neuron, two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a_{i}\right)^{2}, \text { where } a_{i}=\sigma\left(z_{i}\right)=\sigma\left(w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+b\right)
$$

- For gradient descent, we compute $\frac{\partial C}{\partial w_{1}}, \frac{\partial C}{\partial w_{2}}, \frac{\partial C}{\partial b}$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-a_{i}\right) \cdot-\frac{\partial a_{i}}{\partial w_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i} \\
-\frac{\partial C}{\partial b} & =\frac{2}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial b}=\frac{2}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)
\end{aligned}
$$

Loss functions ...

- $\frac{\partial C}{\partial w_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}, \frac{\partial C}{\partial b}=\frac{2}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$
- Each term in $\frac{\partial C}{\partial w_{1}}, \frac{\partial C}{\partial w_{2}}, \frac{\partial C}{\partial b}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$
- Ideally, gradient descent should take large steps when $a-y$ is large
- $\sigma(z)$ is flat at both extremes
- If a is completely wrong, $a \approx(1-y)$, we still have $\sigma^{\prime}(z) \approx 0$
- Learning is slow even when current model is far from optimal

Cross entropy

- A better loss function

$$
C(a, y)= \begin{cases}-\ln (a), & \text { if } y=1 \\ -\ln (1-a), & \text { if } y=0\end{cases}
$$

- If $a \approx y, C(a, y) \approx 0$ in both cases
- If $a \approx 1-y, C(a, y) \rightarrow \infty$ in both cases
- Combine into a single equation

$$
C(a, y)=-[y \ln (a)+(1-y) \ln (1-a)]
$$

- $y=1 \Rightarrow$ second term vanishes, $C=-\ln (a)$
- $y=0 \Rightarrow$ first term vanishes, $C=-\ln (1-a)$
- This is called cross entropy

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial w_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial w_{j}}=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial w_{j}}$
$=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial w_{j}}$
$=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \sigma^{\prime}(z) x_{j}$
$=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$

Cross entropy and gradient descent ...

- $\frac{\partial C}{\partial w_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial w_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j} \\
& =(a-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial b}=(a-y)$
- Thus, as we wanted, the gradient is proportional to $a-y$
- The greater the error, the faster the learning rate

Cross entropy ...

- Overall,

$$
\begin{aligned}
& -\frac{\partial C}{\partial w_{j}}=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right) x_{j}^{i} \\
& -\frac{\partial C}{\partial b}=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-y_{i}\right)
\end{aligned}
$$

- Cross entropy allows the network to learn faster when the model is far from the true one
- Other theoretical justifications to justify using cross entropy
- Derive from goal of maximizing log-likelihood of model
- Will be addressed in advanced ML course

Case study: Handwritten digits

- MNIST database has 1000 samples of handwritten digits $\{0,1, \ldots, 9\}$

- Assume input segmented as individual digits

Handwritten digits ...

- Each image is $28 \times 28=784$ pixels
- Each pixel is a grayscale value from 0.0 (white) to 1.0 (black)
- Building a neural network
- Linearize the image row-wise, inputs are $x_{1}, x_{2}, \ldots, x_{784}$
- Single hidden layer, with 15 nodes
- Output layer has 10 nodes, a decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$
- Final output is the maximum among these
\star Naïvely, $\arg \max _{j} a_{j}$
\star Softmax : $\arg \max _{j} \frac{e^{a_{j}}}{\sum_{j} e^{a_{j}}}$
Smooth approximation to arg max

Handwritten digits ...

Neural network to recognize handwritten digits

Handwritten digits ...

- Intuitively, the internal node recognize features
- Combinations of features identify digits
- Hypothetically, suppose first four hidden neurons focus on four quadrants of image.

- This combination favours the verdict 0

Identifying images

- Suppose we have a network that can recognize hand-written $\{0,1, \ldots, 9\}$ of size 28×28
- We want to find these images in a larger image
- Slide a window of size 28×28 over the larger image
- Apply the original network to each window
- Pool the results to see if the digit occurs anywhere in the image

Convolutional neural network

- Each "window" connects to a different node in the first hidden layer.
input neurons

input neurons

Convolutional neural network ...

- Sliding window performs a convolution of the window network function across the entire input
- Convolutional Neural Network (CNN)
- Combine these appropriately - e.g., max-pool partitions features into small regions, say 2×2, and takes the maximum across each region

Convolutional neural network ...

Example

- Input is 28×28 MNIST image
- Three features, each examines a 5×5 window
- Construct a separate hidden layer for each feature
- Each feature produces a hidden layer with 24×24 nodes
- Max-pool of size 2×2 partitions each feature layer into 12×12
- Second hidden layer
- Finally, three max-pool layers from three hidden features are combined into 10 indicator output nodes for $\{0,1, \ldots, 9\}$

Convolutional neural network ...

Network structure for this example

- Input layer is 28×28
- Three hidden feature layers, each 24×24
- Three max-pool layers, each 12×12
- 10 output nodes

Deep learning

- Hidden layers extract "features" from the input
- Individual features can be combined into more complex ones
- Networks with multiple hidden layers are called deep neural networks
- How deep is deep?
- Originally even 4 layers was deep.
- Recently, 100+ layers have been used
- The main challenge is learning the weights
- Vanishing gradients
- Enormously large training data

