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Loss functions (costs) for neural networks

So far, we have assumed mean sum-squared error as the loss function.

Consider single neuron, two inputs x = (x1, x2)
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Loss functions . . .
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is proportional to σ′(zi )

Ideally, gradient descent should take large steps when a− y is large

I σ(z) is flat at both
extremes

I If a is completely wrong,
a ≈ (1− y), we still have
σ′(z) ≈ 0

I Learning is slow even when
current model is far from
optimal
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Cross entropy

A better loss function

C (a, y) =

{
− ln(a), if y = 1

− ln(1− a), if y = 0

I If a ≈ y , C (a, y) ≈ 0 in both cases
I If a ≈ 1− y , C (a, y)→∞ in both cases

Combine into a single equation

C (a, y) = −[y ln(a) + (1− y) ln(1− a)]

I y = 1 ⇒ second term vanishes, C = − ln(a)
I y = 0 ⇒ first term vanishes, C = − ln(1− a)

This is called cross entropy
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Cross entropy and gradient descent

C = −[y ln(σ(z)) + (1− y) ln(1− σ(z))]
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Cross entropy and gradient descent . . .
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Recall that σ′(z) = σ(z)(1− σ(z))

Therefore,
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Thus, as we wanted, the gradient is proportional to a− y

The greater the error, the faster the learning rate
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Cross entropy . . .
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Cross entropy allows the network to learn faster when the model is far
from the true one

Other theoretical justifications to justify using cross entropy

I Derive from goal of maximizing log-likelihood of model

I Will be addressed in advanced ML course
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Case study: Handwritten digits

MNIST database has 1000 samples of handwritten digits {0,1,. . . ,9}

Assume input segmented as individual digits
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Handwritten digits . . .

Each image is 28× 28 = 784 pixels

Each pixel is a grayscale value from 0.0 (white) to 1.0 (black)

Building a neural network

I Linearize the image row-wise, inputs are x1, x2, . . . , x784

I Single hidden layer, with 15 nodes

I Output layer has 10 nodes, a decision aj for each digit j ∈ {0, 1, . . . , 9}
I Final output is the maximum among these

F Näıvely, arg max
j

aj

F Softmax : arg max
j

eaj∑
j e

aj

Smooth approximation to arg max
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Handwritten digits . . .

Neural network to recognize handwritten digits
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Handwritten digits . . .

Intuitively, the internal node recognize features

Combinations of features identify digits

Hypothetically, suppose first four hidden neurons focus on four
quadrants of image.

This combination favours the verdict 0
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Identifying images

Suppose we have a network that can recognize hand-written
{0, 1, . . . , 9} of size 28× 28

We want to find these images in a larger image

Slide a window of size 28× 28 over the larger image

Apply the original network to each window

Pool the results to see if the digit occurs anywhere in the image
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Convolutional neural network

Each “window” connects to a different node in the first hidden layer.
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Convolutional neural network . . .

Sliding window performs a convolution of the window network
function across the entire input

I Convolutional Neural Network (CNN)

Combine these appropriately — e.g., max-pool partitions features into
small regions, say 2× 2, and takes the maximum across each region
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Convolutional neural network . . .

Example

Input is 28× 28 MNIST image

Three features, each examines a 5× 5 window

I Construct a separate hidden layer for each feature

I Each feature produces a hidden layer with 24× 24 nodes

Max-pool of size 2× 2 partitions each feature layer into 12× 12

I Second hidden layer

Finally, three max-pool layers from three hidden features are
combined into 10 indicator output nodes for {0, 1, . . . , 9}
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Convolutional neural network . . .

Network structure for this example

Input layer is 28× 28

Three hidden feature layers, each 24× 24

Three max-pool layers, each 12× 12

10 output nodes
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Deep learning

Hidden layers extract “features” from the input

Individual features can be combined into more complex ones

Networks with multiple hidden layers are called deep neural networks

I How deep is deep?

I Originally even 4 layers was deep.

I Recently, 100+ layers have been used

The main challenge is learning the weights

I Vanishing gradients

I Enormously large training data
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