
Data Mining and Machine Learning

Madhavan Mukund

Lecture 17, Jan–Apr 2020
https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/


Neural networks

Acyclic network of perceptrons with non-linear activation functions

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 2 / 15



Neural networks

Without loss of generality,
I Assume the network is layered

F All paths from input to output have the same length

I Each layer is fully connected to the previous one
F Set weight to 0 if connection is not needed

Structure of an individual neuron
I Input weights w1, . . . ,wm, bias b, output z , activation value a

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 3 / 15



Notation

Layers ` ∈ {1, 2, . . . , L}
I Inputs are connected first hidden layer, layer 1
I Layer L is the output layer

Layer ` has m` nodes 1, 2, . . . ,m`

Node k in layer ` has bias b`k , output z`k and activation value a`k

Weight on edge from node j in level `−1 to node k in level ` is w `
kj

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 4 / 15



Notation

Why the inversion of indices in the subscript w `
kj?

I z`k = w `
k1a

`−1
1 + w `

k2a
`−1
2 + · · ·+ w `

km`−1
a`−1m`−1

I Let w `
k = (w `

k1,w
`
k2, . . . ,w

`
km`−1

)

and a`−1 = (a`−11 , a`−12 , . . . , a`−1m`−1
)

I Then z`k = w `
k · a`−1

Assume all layers have same number of nodes
I Let m = max

`∈{1.2,...,L}
m`

I For any layer i , for k > mi , we set all of w `
kj , b

`
k , z

`
k , a

`
k to 0

Matrix formulation
z`1
z`2
· · ·
z`m

 =


w `

1

w `
2

· · ·
w `

m




a`−11

a`−12

· · ·
a`−1m


Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 5 / 15



Learning the parameters

Need to find optimum values for all weights w `
kj

Use gradient descent

I Cost function C , partial derivatives
∂C

∂w `
kj

,
∂C

∂b`k

Assumptions about the cost function

1 For input x, C (x) is a function of only the output layer activation, aL

F For instance, for training input (xi , yi ), sum-squared error is (yi − aLi )2

F Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

F Each input xi incurs cost C(xi ), total cost is
1

n

n∑
i=1

C(xi )

F For instance, mean sum-squared error
1

n

n∑
i=1

(yi − aLi )2

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 6 / 15



Learning the parameters

Assumptions about the cost function

1 For input x, C (x) is a function of only the output layer activation, aL

2 Total cost is average of individual input costs

With these assumptions:

I We can write
∂C

∂w `
kj

,
∂C

∂b`k
in terms of individual

∂aLi
∂w `

kj

,
∂aLi
∂b`k

I Can extrapolate change in individual cost C (x) to change in overall
cost C — stochastic gradient descent

Complex dependency of C on w `
kj , b

`
k

I Many intermediate layers

I Many paths through these layers

Use chain rule to decompose into local dependencies

I y = g(f (x)) ⇒ ∂g

∂x
=
∂g

∂f

∂f

∂x
Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 7 / 15



Calculating dependencies

If we perturb the output z`j at node j in layer `, what is the impact on
final output, overall cost?

Focus on
∂C

∂z`j
— from these, we can compute

∂C

∂w `
kj

,
∂C

∂b`k

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 8 / 15



Computing partial derivatives

Use chain rule to run backpropagation algorithm

I Given an input, execute the network from left to right to compute all
outputs

I Using the chain rule, work backwards from right to left to compute all

values of
∂C

∂z`j

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 9 / 15



Applying the chain rule

Let δ`j denote
∂C

∂z`j

Base Case

` = L, δLj

Chain rule:
∂C

∂zLj
=
∂C

∂aLj

∂aLj

∂zLj

C =
1

n

n∑
i=1

(yi − aLi )2, so
∂C

∂aLj
= 2(yj − aLj )(−1) = 2(aLj − yj)

aLj = σ(zLj ), so
∂aLj

∂zLj
= σ′(zLj )

I σ(u) =
1

1 + e−u
, σ′(u) =

∂σ(u)

∂u
= σ(u)(1− σ(u)) Work this out!

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 10 / 15



Applying the chain rule

Induction step

From δ`+1
j to δ`j

δ`j =
∂C

∂z`j
=

m∑
k=1

∂C

∂z`+1
k

∂z`+1
k

∂z`j

First term inside summation:
∂C

∂z`+1
k

= δ`+1
k

Second term: z`+1
k =

m∑
i=1

w `+1
ki a`i + b`+1

k =
m∑
i=1

w `+1
ki σ(z`i ) + b`+1

k

I For i 6= j ,
∂

∂z`j
[w `+1

ki σ(z`i ) + b`+1
k ] = 0

I For i = j ,
∂

∂z`j
[w `+1

kj σ(z`j ) + b`+1
k ] = w `+1

kj σ′(z`j )

I So
∂z`+1

k

∂z`j
= w `+1

kj σ′(z`j )

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 11 / 15



Finishing touches

What we actually need to compute are
∂C

∂w `
kj

,
∂C

∂b`k

∂C

∂w `
kj

=
∂C

∂z`k

∂z`k
∂w `

kj

= δ`k
∂z`k
∂w `

kj

∂C

∂b`k
=
∂C

∂z`k

∂z`k
∂b`k

= δ`k
∂z`k
∂b`k

We have already computed δ`k , so what remains is
∂z`k
∂w `

kj

,
∂z`k
∂b`k

Since z`k =
m∑
i=1

w `
kia

`−1
i + b`k , it follows that

I
∂z`k
∂w `

kj

= a`−1j — terms with i 6= j vanish

I
∂z`k
∂b`k

= 1 — terms with i 6= j vanish

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 12 / 15



Backpropagation

In the forward pass, compute all z`k , a`k

In the backward pass, compute all δ`k , from which we can get all
∂C

∂w `
kj

,
∂C

∂b`k

Increment each parameter by a step ∆ in the direction opposite the
gradient

Typically, partition the training data into groups (mini batches)

Update parameters after each mini batch — stochastic gradient
descent

Epoch — one pass through the entire training data

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 13 / 15



Challenges

Backpropagation dates from mid-1980’s

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, 323, 533-–536 (1986)

Computationally infeasible till advent of modern parallel hardware,
GPUs for vector (tensor) calculations

Vanishing gradient problem — cascading derivatives make gradients
in initial layers very small, convergence is slow

I In rare cases, exploding gradient also occurs

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 14 / 15



Pragmatics

Many heuristics to speed up gradient descent

I Dynamically vary step size

I Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters
that can be tuned

I Network structure: Number of layers, type of activation function

I Training: Mini-batch size, number of epochs

I Heuristics: Choice of optimizer for gradient descent

Madhavan Mukund Data Mining and Machine Learning Lecture 17, Jan–Apr 2020 15 / 15


