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Neural networks

@ Acyclic network of perceptrons with non-linear activation functions

hidden layers

output layer

input layer
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Neural networks

@ Without loss of generality,
» Assume the network is layered
* All paths from input to output have the same length
» Each layer is fully connected to the previous one

* Set weight to 0 if connection is not needed

@ Structure of an individual neuron
> Input weights wi, ..., w,,, bias b, output z, activation value a
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Notation

@ Layers ¢ € {1,2,... L}
> Inputs are connected first hidden layer, layer 1
» Layer L is the output layer

@ Layer / has my nodes 1,2,..., my

e Node k in layer / has bias b¢, output zﬁ and activation value af’(

@ Weight on edge from node j in level /—1 to node k in level 7 is Wf.

layer 1 layer 2 layer 3 L
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Notation

@ Why the inversion of indices in the subscript W,fj?

0 _ 0 -1 0 (-1 ¢ 1
> Zp = Wiqd) Tt Wedy bW, an
—l _ (00 ¢
> Let Wy = Wiy, Wos - - s Wy, )
and 3= (af LAyt .. akt)

> Then z{ = w} - 3" *

@ Assume all layers have same number of nodes

» let m= max my
0e{1.2,...,.L}

» For any layer i, for k > m;, we set all of ij7b£,2f,a£ to 0

@ Matrix formulation

Z W} ai~!
Eg 1z agf !
=l A /—1
Zm Wm am
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Learning the parameters

@ Need to find optimum values for all weights W,fj

@ Use gradient descent
aC

. : R 0
» Cost function C, partial derivatives —, —
Owy; Oby

@ Assumptions about the cost function

@ For input x, C(x) is a function of only the output layer activation, a‘
* For instance, for training input (x;, y;), sum-squared error is (y; — a\)’

* Note that x;, y; are fixed values, only a,-L is a variable
@ Total cost is average of individual input costs

. : 1
* Each input x; incurs cost C(x;), total cost is — E C(x/)
n

i=1
n

. 1 L[y2
* For instance, mean sum-squared error — E (vi—ar)
n
i=1
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Learning the parameters

@ Assumptions about the cost function

@ For input x, C(x) is a function of only the output layer activation, a*
@ Total cost is average of individual input costs

@ With these assumptions:
dat  0at

0C © ;
AREYN YN
owy; Oby Owy; Oby
» Can extrapolate change in individual cost C(x) to change in overall
cost C — stochastic gradient descent

» We can write in terms of individual

@ Complex dependency of C on W,fj b
» Many intermediate layers
» Many paths through these layers

@ Use chain rule to decompose into local dependencies
B dg  0g of
> y=g(f(x)) = Ox _ Of Ox
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Calculating dependencies

o If we perturb the output zf at node j in layer ¢, what is the impact on

final output, overall cost?

L
s
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oC oC 0C
@ Focus on — — from these, we can compute —, ——
)z owt." obt
i kj k
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Computing partial derivatives

@ Use chain rule to run backpropagation algorithm

» Given an input, execute the network from left to right to compute all
outputs

» Using the chain rule, work backwards from right to left to compute all

values of %
0z¢

J
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Applying the chain rule

L
97

Let (5f- denote

Base Case
C=1L,0f J

1 oC
o C= . Z(y, — af)?, so 22l 2(yj — ap)(—1) = 2(aj — y))
i=1 J
dat
L — 5(zt —J — 5/
e a; = 0(z), so 8sz a'(z;)
1 iy Oo(u) B .
» o(u) = prp=miid (u) = oy o(u)(1 — o(u)) Work this out!
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Applying the chain rule

Induction step

From 5f+1 to 5f

m
st 9C oC 9z,
° 9 =5~ 2
J 82} a Z+1 82
Fi S — _ s+l
o Irst term InSIde summation: +1 (5
0z,
@ Second term: zﬁ“ E Wngl bZJrl Z:WE+1 bHl
» For | 7&], [ et (z,- )+ b =0
5 __ F-‘rl 4 (+17 0+l 1o 0
>F0rl—_j,0p[ o(z) + b = w;0'(z)
aZZ+1
k IS S
» So 52t = Wi a'(z)
J
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Finishing touches

oC
What we actually need to compute are —-, —
8ij Oby

oc  9C 0z,  , 0z

® ol T ot owt.  Ykaut

ij Zk ij ij
ac  aC ozl 07
® ot olabt  kopt
k Z Oy k

y .. 0z, 0z
We have already computed J,, so what remains is i
ow;. 0b
kj k
m
@ Since z = E wiat !+ b, it follows that
i=1
0zf _ e .
’; — a1 — terms with / # j vanish
ow,; J
X
0z . .
’2 = 1 — terms with / # j vanish
ob;
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Backpropagation

@ In the forward pass, compute all z, a,

@ In the backward pass, compute all 55, from which we can get all
oC 0oC
E)ij ob,

@ Increment each parameter by a step A in the direction opposite the
gradient

Typically, partition the training data into groups (mini batches)

@ Update parameters after each mini batch — stochastic gradient
descent

@ Epoch — one pass through the entire training data
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Challenges

@ Backpropagation dates from mid-1980's

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, 323, 533--536 (1986)

@ Computationally infeasible till advent of modern parallel hardware,
GPUs for vector (tensor) calculations

@ Vanishing gradient problem — cascading derivatives make gradients
in initial layers very small, convergence is slow

> In rare cases, exploding gradient also occurs
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Pragmatics

@ Many heuristics to speed up gradient descent
» Dynamically vary step size

» Dampen positive-negative oscillations . ..

@ Libraries implementing neural networks have several hyperparameters
that can be tuned

» Network structure: Number of layers, type of activation function
» Training: Mini-batch size, number of epochs

» Heuristics: Choice of optimizer for gradient descent
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