Data Mining and Machine Learning

Madhavan Mukund

Lecture 17, Jan-Apr 2020
https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

Neural networks

- Acyclic network of perceptrons with non-linear activation functions

Neural networks

- Without loss of generality,
- Assume the network is layered
* All paths from input to output have the same length
- Each layer is fully connected to the previous one
* Set weight to 0 if connection is not needed
- Structure of an individual neuron
- Input weights w_{1}, \ldots, w_{m}, bias b, output z, activation value a

Notation

- Layers $\ell \in\{1,2, \ldots, L\}$
- Inputs are connected first hidden layer, layer 1
- Layer L is the output layer
- Layer ℓ has m_{ℓ} nodes $1,2, \ldots, m_{\ell}$
- Node k in layer ℓ has bias b_{k}^{ℓ}, output z_{k}^{ℓ} and activation value a_{k}^{ℓ}
- Weight on edge from node j in level $\ell-1$ to node k in level ℓ is $w_{k j}^{\ell}$

Notation

- Why the inversion of indices in the subscript $w_{k j}^{\ell}$?
- $z_{k}^{\ell}=w_{k 1}^{\ell} a_{1}^{\ell-1}+w_{k 2}^{\ell} a_{2}^{\ell-1}+\cdots+w_{k m_{\ell-1}}^{\ell} a_{m_{\ell-1}}^{\ell-1}$
- Let $\bar{w}_{k}^{\ell}=\left(w_{k 1}^{\ell}, w_{k 2}^{\ell}, \ldots, w_{k m_{\ell-1}}^{\ell}\right)$ and $\bar{a}^{\ell-1}=\left(a_{1}^{\ell-1}, a_{2}^{\ell-1}, \ldots, a_{m_{\ell-1}}^{\ell-1}\right)$
- Then $z_{k}^{\ell}=\bar{w}_{k}^{\ell} \cdot \bar{a}^{\ell-1}$
- Assume all layers have same number of nodes
- Let $m=\max _{\ell \in\{1.2, \ldots, L\}} m_{\ell}$
- For any layer i, for $k>m_{i}$, we set all of $w_{k j}^{\ell}, b_{k}^{\ell}, z_{k}^{\ell}$, a_{k}^{ℓ} to 0
- Matrix formulation

$$
\left[\begin{array}{c}
\bar{z}_{1}^{\ell} \\
\bar{z}_{2}^{\ell} \\
\cdots \\
\bar{z}_{m}^{\ell}
\end{array}\right]=\left[\begin{array}{c}
\bar{w}_{1}^{\ell} \\
\bar{w}_{2}^{\ell} \\
\cdots \\
\bar{w}_{m}^{\ell}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\ell-1} \\
a_{2}^{\ell-1} \\
\cdots \\
a_{m}^{\ell-1}
\end{array}\right]
$$

Learning the parameters

- Need to find optimum values for all weights $w_{k j}^{\ell}$
- Use gradient descent
- Cost function C, partial derivatives $\frac{\partial C}{\partial w_{k j}^{l}}, \frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function
(1) For input $\mathbf{x}, C(\mathbf{x})$ is a function of only the output layer activation, a^{L}
\star For instance, for training input $\left(\mathrm{x}_{i}, y_{i}\right)$, sum-squared error is $\left(y_{i}-a_{i}^{L}\right)^{2}$
* Note that x_{i}, y_{i} are fixed values, only a_{i}^{L} is a variable
(2) Total cost is average of individual input costs
\star Each input \mathbf{x}_{i} incurs cost $C\left(\mathbf{x}_{i}\right)$, total cost is $\frac{1}{n} \sum_{i=1}^{n} C\left(\mathbf{x}_{i}\right)$
\star For instance, mean sum-squared error $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a_{i}^{L}\right)^{2}$

Learning the parameters

- Assumptions about the cost function
(1) For input $\mathrm{x}, C(\mathrm{x})$ is a function of only the output layer activation, a^{L}
(2) Total cost is average of individual input costs
- With these assumptions:
- We can write $\frac{\partial C}{\partial w_{k j}^{\ell}}, \frac{\partial C}{\partial b_{k}^{\ell}}$ in terms of individual $\frac{\partial a_{i}^{L}}{\partial w_{k j}^{\ell}}, \frac{\partial a_{i}^{L}}{\partial b_{k}^{\ell}}$
- Can extrapolate change in individual cost $C(x)$ to change in overall cost C - stochastic gradient descent
- Complex dependency of C on $w_{k j}^{\ell}$, b_{k}^{ℓ}
- Many intermediate layers
- Many paths through these layers
- Use chain rule to decompose into local dependencies

$$
y=g(f(x)) \Rightarrow \frac{\partial g}{\partial x}=\frac{\partial g}{\partial f} \frac{\partial f}{\partial x}
$$

Calculating dependencies

- If we perturb the output z_{j}^{ℓ} at node j in layer ℓ, what is the impact on final output, overall cost?

- Focus on $\frac{\partial C}{\partial z_{j}^{l}}$ - from these, we can compute $\frac{\partial C}{\partial w_{k j}^{l}}, \frac{\partial C}{\partial b_{k}^{\ell}}$

Computing partial derivatives

- Use chain rule to run backpropagation algorithm
- Given an input, execute the network from left to right to compute all outputs
- Using the chain rule, work backwards from right to left to compute all values of $\frac{\partial C}{\partial z_{j}^{\ell}}$

Applying the chain rule

Let δ_{j}^{ℓ} denote $\frac{\partial C}{\partial z_{j}^{\ell}}$

Base Case

$\ell=L, \delta_{j}^{L}$

- Chain rule: $\frac{\partial C}{\partial z_{j}^{L}}=\frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}}$
- $C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a_{i}^{L}\right)^{2}$, so $\frac{\partial C}{\partial a_{j}^{L}}=2\left(y_{j}-a_{j}^{L}\right)(-1)=2\left(a_{j}^{L}-y_{j}\right)$
- $a_{j}^{L}=\sigma\left(z_{j}^{L}\right)$, so $\frac{\partial a_{j}^{L}}{\partial z_{j}^{L}}=\sigma^{\prime}\left(z_{j}^{L}\right)$
- $\sigma(u)=\frac{1}{1+e^{-u}}, \sigma^{\prime}(u)=\frac{\partial \sigma(u)}{\partial u}=\sigma(u)(1-\sigma(u))$ Work this out!

Applying the chain rule

Induction step

From $\delta_{j}^{\ell+1}$ to δ_{j}^{ℓ}

- $\delta_{j}^{\ell}=\frac{\partial C}{\partial z_{j}^{\ell}}=\sum_{k=1}^{m} \frac{\partial C}{\partial z_{k}^{\ell+1}} \frac{\partial z_{k}^{\ell+1}}{\partial z_{j}^{\ell}}$
- First term inside summation: $\frac{\partial C}{\partial z_{k}^{\ell+1}}=\delta_{k}^{\ell+1}$
- Second term: $z_{k}^{\ell+1}=\sum_{i=1}^{m} w_{k i}^{\ell+1} a_{i}^{\ell}+b_{k}^{\ell+1}=\sum_{i=1}^{m} w_{k i}^{\ell+1} \sigma\left(z_{i}^{\ell}\right)+b_{k}^{\ell+1}$
- For $i \neq j, \frac{\partial}{\partial z_{j}^{l}}\left[w_{k i}^{\ell+1} \sigma\left(z_{i}^{\ell}\right)+b_{k}^{\ell+1}\right]=0$
- For $i=j, \frac{\partial}{\partial z_{j}^{\ell}}\left[w_{k j}^{\ell+1} \sigma\left(z_{j}^{\ell}\right)+b_{k}^{\ell+1}\right]=w_{k j}^{\ell+1} \sigma^{\prime}\left(z_{j}^{\ell}\right)$
- So $\frac{\partial z_{k}^{\ell+1}}{\partial z_{j}^{\ell}}=w_{k j}^{\ell+1} \sigma^{\prime}\left(z_{j}^{\ell}\right)$

Finishing touches

What we actually need to compute are $\frac{\partial C}{\partial w_{k j}^{\ell}}, \frac{\partial C}{\partial b_{k}^{\ell}}$

- $\frac{\partial C}{\partial w_{k j}^{l}}=\frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial w_{k j}^{l}}=\delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial w_{k j}^{\ell}}$
- $\frac{\partial C}{\partial b_{k}^{\ell}}=\frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}=\delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}$

We have already computed δ_{k}^{ℓ}, so what remains is $\frac{\partial z_{k}^{\ell}}{\partial w_{k j}^{\ell}}, \frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}$

- Since $z_{k}^{\ell}=\sum_{i=1}^{m} w_{k i}^{\ell} a_{i}^{\ell-1}+b_{k}^{\ell}$, it follows that
- $\frac{\partial z_{k}^{\ell}}{\partial w_{k j}^{\ell}}=a_{j}^{\ell-1}-$ terms with $i \neq j$ vanish
- $\frac{\partial z_{k}^{\ell}}{\partial b_{k}^{\ell}}=1$ - terms with $i \neq j$ vanish

Backpropagation

- In the forward pass, compute all $z_{k}^{\ell}, a_{k}^{\ell}$
- In the backward pass, compute all δ_{k}^{ℓ}, from which we can get all

$$
\frac{\partial C}{\partial w_{k j}^{\ell}}, \frac{\partial C}{\partial b_{k}^{\ell}}
$$

- Increment each parameter by a step Δ in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

- Update parameters after each mini batch - stochastic gradient descent
- Epoch - one pass through the entire training data

Challenges

- Backpropagation dates from mid-1980's

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams Nature, 323, 533--536 (1986)

- Computationally infeasible till advent of modern parallel hardware, GPUs for vector (tensor) calculations
- Vanishing gradient problem - cascading derivatives make gradients in initial layers very small, convergence is slow
- In rare cases, exploding gradient also occurs

Pragmatics

- Many heuristics to speed up gradient descent
- Dynamically vary step size
- Dampen positive-negative oscillations ...
- Libraries implementing neural networks have several hyperparameters that can be tuned
- Network structure: Number of layers, type of activation function
- Training: Mini-batch size, number of epochs
- Heuristics: Choice of optimizer for gradient descent

