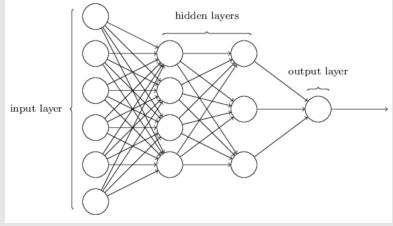
Data Mining and Machine Learning

Madhavan Mukund

Lecture 17, Jan-Apr 2020 https://www.cmi.ac.in/~madhavan/courses/dmml2020jan/

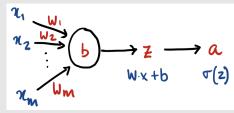
Neural networks

• Acyclic network of perceptrons with non-linear activation functions



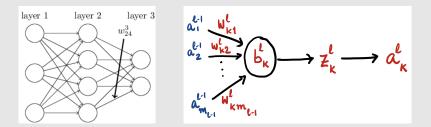
Neural networks

- Without loss of generality,
 - Assume the network is layered
 - ★ All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - ★ Set weight to 0 if connection is not needed
- Structure of an individual neuron
 - ▶ Input weights w_1, \ldots, w_m , bias *b*, output *z*, activation value *a*



Notation

- Layers $\ell \in \{1, 2, \dots, L\}$
 - Inputs are connected first hidden layer, layer 1
 - Layer L is the output layer
- Layer ℓ has m_ℓ nodes $1, 2, \ldots, m_\ell$
- Node k in layer ℓ has bias b_k^{ℓ} , output z_k^{ℓ} and activation value a_k^{ℓ}
- Weight on edge from node j in level $\ell 1$ to node k in level ℓ is w_{ki}^{ℓ}



Notation

- Why the inversion of indices in the subscript w_{ki}^{ℓ} ?
 - $z_k^\ell = w_{k1}^\ell a_1^{\ell-1} + w_{k2}^\ell a_2^{\ell-1} + \dots + w_{km_{\ell-1}}^\ell a_{m_{\ell-1}}^{\ell-1}$
 - ► Let $\overline{w}_k^\ell = (w_{k1}^\ell, w_{k2}^\ell, \dots, w_{km_{\ell-1}}^\ell)$ and $\overline{a}^{\ell-1} = (a_1^{\ell-1}, a_2^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$
 - Then $z_k^{\ell} = \overline{w}_k^{\ell} \cdot \overline{a}^{\ell-1}$
- Assume all layers have same number of nodes
 - Let $m = \max_{\ell \in \{1,2,\ldots,L\}} m_\ell$
 - For any layer *i*, for $k > m_i$, we set all of $w_{kj}^{\ell}, b_k^{\ell}, z_k^{\ell}, a_k^{\ell}$ to 0
- Matrix formulation

$$\left[egin{array}{c} \overline{z}_1^\ell \ \overline{z}_2^\ell \ \cdots \ \overline{z}_m^\ell \end{array}
ight] = \left[egin{array}{c} \overline{w}_1^\ell \ \overline{w}_2^\ell \ \cdots \ \overline{w}_m^\ell \end{array}
ight] \left[egin{array}{c} a_1^{\ell-1} \ a_2^{\ell-1} \ \cdots \ a_m^{\ell-1} \end{array}
ight]$$

Learning the parameters

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function *C*, partial derivatives $\frac{\partial C}{\partial w_{L_i}^{\ell}}$, $\frac{\partial C}{\partial b_L^{\ell}}$
- Assumptions about the cost function
 - **(**) For input **x**, $C(\mathbf{x})$ is a function of only the output layer activation, a^{L}
 - * For instance, for training input (\mathbf{x}_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - * Note that \mathbf{x}_i , y_i are fixed values, only a_i^L is a variable
 - 2 Total cost is average of individual input costs
 - * Each input \mathbf{x}_i incurs cost $C(\mathbf{x}_i)$, total cost is $\frac{1}{n} \sum_{i=1}^{n} C(\mathbf{x}_i)$

* For instance, mean sum-squared error $\frac{1}{n} \sum_{i=1}^{n} (y_i - a_i^L)^2$

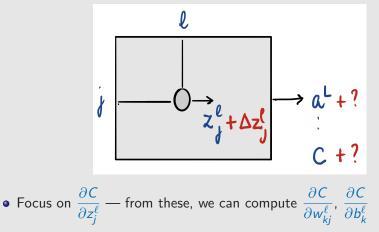
Learning the parameters

- Assumptions about the cost function
 - **(**) For input x, C(x) is a function of only the output layer activation, a^{L}
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$ in terms of individual $\frac{\partial a_i^L}{\partial w_{kj}^{\ell}}$, $\frac{\partial a_i^L}{\partial b_k^{\ell}}$
 - Can extrapolate change in individual cost C(x) to change in overall cost C stochastic gradient descent
- Complex dependency of C on w_{kj}^{ℓ} , b_k^{ℓ}
 - Many intermediate layers
 - Many paths through these layers
- Use chain rule to decompose into local dependencies

•
$$y = g(f(x)) \Rightarrow \frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x}$$

Calculating dependencies

• If we perturb the output z_j^{ℓ} at node j in layer ℓ , what is the impact on final output, overall cost?



Computing partial derivatives

- Use chain rule to run backpropagation algorithm
 - Given an input, execute the network from left to right to compute all outputs

Compute Z, a
Compute
$$\frac{\partial C}{\partial z_{k}^{e}}, \frac{\partial C}{\partial w_{kj}^{e}}, \frac{\partial C}{\partial b_{k}^{e}}$$

Applying the chain rule

Let δ_j^{ℓ} denote $\frac{\partial C}{\partial z_i^{\ell}}$

Base Case

 $\ell = L, \ \delta_j^L$

• Chain rule: $\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$ • $C = \frac{1}{n} \sum_{i=1}^n (y_i - a_i^L)^2$, so $\frac{\partial C}{\partial a_j^L} = 2(y_j - a_j^L)(-1) = 2(a_j^L - y_j)$ • $a_j^L = \sigma(z_j^L)$, so $\frac{\partial a_j^L}{\partial z_j^L} = \sigma'(z_j^L)$ • $\sigma(u) = \frac{1}{1 + e^{-u}}$, $\sigma'(u) = \frac{\partial \sigma(u)}{\partial u} = \sigma(u)(1 - \sigma(u))$ Work this out!

Applying the chain rule

Induction step From $\delta_i^{\ell+1}$ to δ_i^{ℓ} • $\delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^{m} \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$ • First term inside summation: $\frac{\partial C}{\partial z^{\ell+1}} = \delta_k^{\ell+1}$ • Second term: $z_k^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} a_i^{\ell} + b_k^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}$ • For $i \neq j$, $\frac{\partial}{\partial z_j^{\ell}} [w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}] = 0$ • For i = j, $\frac{\partial}{\partial z_i^{\ell}} [w_{kj}^{\ell+1} \sigma(z_j^{\ell}) + b_k^{\ell+1}] = w_{kj}^{\ell+1} \sigma'(z_j^{\ell})$ • So $\frac{\partial z_k^{\ell+1}}{\partial z_k^{\ell}} = w_{kj}^{\ell+1} \sigma'(z_j^{\ell})$

Finishing touches

What we actually need to compute are $\frac{\partial C}{\partial w_{\ell_i}^{\ell_i}}$, $\frac{\partial C}{\partial b_{\ell_i}^{\ell_i}}$ • $\frac{\partial C}{\partial w_{ki}^{\ell}} = \frac{\partial C}{\partial z_{k}^{\ell}} \frac{\partial z_{k}^{\ell}}{\partial w_{ki}^{\ell}} = \delta_{k}^{\ell} \frac{\partial z_{k}^{\ell}}{\partial w_{ki}^{\ell}}$ • $\frac{\partial C}{\partial b^{\ell}} = \frac{\partial C}{\partial z^{\ell}} \frac{\partial z^{\ell}_{k}}{\partial b^{\ell}} = \delta^{\ell}_{k} \frac{\partial z^{\ell}_{k}}{\partial b^{\ell}}$ We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w_{\ell}^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b_{\ell}^{\ell}}$ • Since $z_k^\ell = \sum w_{ki}^\ell a_i^{\ell-1} + b_k^\ell$, it follows that i-1• $\frac{\partial z_k^{\ell}}{\partial w_{\ell_i}^{\ell}} = a_j^{\ell-1}$ — terms with $i \neq j$ vanish • $\frac{\partial z_k^{\ell}}{\partial b^{\ell}} = 1$ — terms with $i \neq j$ vanish

Madhavan Mukund

Data Mining and Machine Learning

Backpropagation

- In the forward pass, compute all z_k^ℓ , a_k^ℓ
- In the backward pass, compute all δ_k^{ℓ} , from which we can get all $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- \bullet Increment each parameter by a step Δ in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

- Update parameters after each mini batch stochastic gradient descent
- Epoch one pass through the entire training data

Challenges

• Backpropagation dates from mid-1980's

Learning representations by back-propagating errors David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams *Nature*, **323**, 533--536 (1986)

- Computationally infeasible till advent of modern parallel hardware, GPUs for vector (tensor) calculations
- Vanishing gradient problem cascading derivatives make gradients in initial layers very small, convergence is slow
 - In rare cases, exploding gradient also occurs

Pragmatics

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .
- Libraries implementing neural networks have several hyperparameters that can be tuned
 - ► Network structure: Number of layers, type of activation function
 - Training: Mini-batch size, number of epochs
 - Heuristics: Choice of optimizer for gradient descent