DMML, 3 March 2020
Classoficahin - Superused learion
Sentiment Analysis
Naively - each word has a score (tue or -ve) Compute weighted sum of scores of new review If above threshold - positive Words are feahns /attributes , $x_{1}, x_{2}, \ldots, x_{N}$ Compute $\sum w_{i} x_{i}$ for words in the document

Chede $\sum w_{i} x_{i}>t$


Linear separator
Geometuc intrepretation of data Separate categone by a loypeplane

Data items are of the form $\bar{x}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$

$$
x_{i} \in \mathbb{R}
$$

Assume classificahon allows linear separability
$\exists \bar{w}=\left\langle w_{1}, w_{2}, \ldots w_{m}\right\rangle$ such that
For each positive $\bar{x}, \bar{w} \cdot \bar{x}>t$
negative $\bar{x}, \quad \bar{\omega} \cdot x<t$
How do we find $\bar{w}$ ?

Instead

$$
\begin{array}{ll}
\bar{W} \cdot \bar{x}-t>0 & \text { Positue } \bar{x} \\
\bar{w} \cdot \bar{x}-t<0 & \text { Negalue } \bar{x}
\end{array}
$$

$\left.\begin{array}{ll}\text { Expand } \bar{\omega} \text { to }\langle\bar{w},-t\rangle & \sim \hat{w} \\ \langle\bar{x}, r\rangle & \sim \hat{x}\end{array}\right] \rightarrow$ wite as

$$
\bar{x} \text { to }\langle\bar{x}, 1\rangle \sim \hat{x}] \rightarrow \text { wnte as } \bar{w}_{1} \bar{x}
$$

$$
\hat{\omega} \hat{x}>0
$$

$$
\hat{\omega} \hat{x}<0
$$

Each input $\bar{x}_{i}$ has a lased - Yes/No

$$
l_{i}=+1-1
$$

Now $\forall i . \quad \bar{w} \cdot \bar{x}_{i}-l_{i}>0$
Direct way is to use linear programing But, there is a simpler way


Many possible it may work
Right now, we are happy to find any one

Want $w^{*}$ s.t. $w^{*} \cdot x_{i} \cdot l_{i}>0 \quad \forall_{i}$
Scale $\omega^{k}$ st. $\omega^{k} \cdot x_{i}-l_{i}>1 \quad \forall i$
Distance of nearest pout is $\frac{1}{\left|\omega_{l}^{*}\right|^{2}}$


Algorithm [Perception]
$\omega \leftarrow 0$
while there exists $x_{i}$ s.t. $w \cdot x_{i} \cdot l_{i} \leq 0$

$$
w \leftarrow w+x_{i} l i=\begin{aligned}
& w+x_{i} \text { if } x_{i} \text { positive } \\
& w-x_{i} \text { if } x_{i} \text { negative }
\end{aligned}
$$

Why does this converge?
Theorem
Suppose $\exists w^{*}$ s.t $\omega^{*} \cdot x_{i} \cdot l_{i}>1 \quad \forall_{i}$
Perception algontum finds $w$ s.t. $w \cdot x_{i} \cdot l_{i}>0 \forall i$ in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where $r=\max \left|x_{i}\right|$

No guarantee on "quality" of $w$

Proof
Keep track of $w^{\top} w^{*},|w|^{2} \quad w \begin{gathered}\text { current } \\ \text { eshnete }\end{gathered}$ $W^{*}$ is assumed

1. Each update to $\omega$ increases $\omega^{\top} \omega^{*}$ by at least 1

$$
\left(w+x_{i} l_{i}\right)^{\top} \omega^{*}=w^{\top} w^{*}+x^{\top} l_{i} w^{*}
$$

Suppose $L_{L}=+1 \quad W^{*} x_{L}^{\top}>1>1$ at least +1

$$
l_{1}=-1 \quad w^{d} x_{L}^{\top}<-1>1
$$

2. Each update to $w$ increases $|w|^{2} l_{y}$ at most $r^{2}$

$$
\begin{aligned}
\left(w+x_{i} l_{i}\right)^{\top}\left(w+x_{i} l_{i}\right) & =|w|^{2}+\frac{2 x_{i}^{\top} l w}{\leq 0}+\left|x_{i} l_{i}\right|^{2} \\
& \leq|w|^{2}+\left|x_{i}\right|^{2}
\end{aligned}
$$

Suppose we update $w \quad m$ times
$\omega^{\top} \omega^{*} \geq m \quad$ (grows by at least 1 each plait)
$|w|^{2} \leq m r^{2}$ (each update increase by. at most $r^{2}$ )

$$
\begin{aligned}
& m \leq|w|\left|w^{*}\right| \\
& \frac{m}{\left|w^{*}\right|} \leq|w| \leq \sqrt{m r} \\
& \sqrt{m} \leq r \cdot\left|w^{*}\right| \\
& m \leq r^{2}\left|w^{*}\right|^{2}
\end{aligned}
$$

But what about the assumpten of hnean separability?


Good pount - curcle of raluns 2
Bad pouls - circh of rahns I
Not linearly separible.
Geounctoc transfoumator.

$$
\langle x, y\rangle \rightarrow\left\langle x, y, x^{2}+y^{2}\right\rangle
$$

$z=1.5$ plane separtes

Given a transformers $\bar{x} \longleftrightarrow \varphi(\bar{x})$
Perception

$$
\begin{aligned}
& w=0 \pm x_{\imath} \pm x_{j} \pm x_{k} \pm \ldots \\
& w=\left\langle u_{1}, v_{2}, \ldots u_{m}\right\rangle\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \\
& x_{\text {tram }}
\end{aligned}
$$

Classify a new $\bar{z}$

$$
\begin{array}{ll}
\bar{w} \cdot \bar{z}>0 ? & \left(\bar{u} \cdot \bar{x}_{\operatorname{tram}}\right) \cdot \bar{z}>0 \\
& (\bar{u} \cdot \overline{\varphi(\bar{x})}) \cdot \varphi(\bar{z}>0
\end{array}
$$

All we need to know abut $\varphi$ is how to compute $\operatorname{dot}$ products $\varphi\left(\bar{x}_{l}\right) \cdot \varphi\left(\bar{x}_{j}\right)$

Suppose we have a function $k\left(\overline{x_{i}}, \bar{x}_{j}\right)$

$$
\text { st. } \forall \bar{x}_{2}, \bar{x}_{,} \quad k\left(\bar{x}_{1}, \bar{x}_{3}\right)=\varphi\left(\bar{x}_{2}\right) \cdot \varphi\left(\bar{x}_{3}\right)
$$

Suck a $k$ is called a kernel funchin $\partial \varphi$. sit. $k\left(\bar{x}_{i}, \bar{x}_{j}\right)=\varphi\left(\bar{x}_{i}\right) \cdot \varphi\left(\bar{x}_{j}\right) \forall \bar{x}_{i}, \bar{x}_{j}$

Strategy Try out vanous kemels (don't norry about that $\varphi$ looks (ikee)

When is $k$ a kernel?
Minimin requmant - symmetic
Non constuncture charalterizaton - Mercer's Theom
Constuncture deffurtion un tums of positve semudefunte matrices

