Data items are of the form
$$\overline{x} = \langle x_1, x_2, ..., x_m \rangle$$

Ni $\in \mathbb{R}$
Assume classification allows linear separability
 $\exists \overline{w} = \langle w_1, w_2, ..., w_m \rangle$ such that
For each positive \overline{x} , $\overline{w} \cdot \overline{x} > t$
Negative \overline{x} , $\overline{w} \cdot \overline{x} < t$
How do we find \overline{w} ?

Instead

$$\overline{W}.\overline{x} - t > 0 \qquad \text{Positive } \overline{x}$$

$$\overline{W}.\overline{x} - t < 0 \qquad \text{Negative } \overline{x}$$

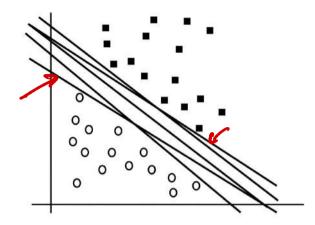
$$\text{Expand } \overline{W} + 0 \qquad \langle \overline{W}, -t \rangle \qquad \sim \widehat{W} \qquad] \rightarrow \text{ write as}$$

$$\overline{X} \quad 6 \qquad \langle \overline{x}, 1 \rangle \qquad \sim \widehat{X} \qquad] \rightarrow \text{ write as}$$

$$\overline{W}.\overline{X} > 0$$

$$\overline{W}.\overline{X} < 0$$

Each input
$$\overline{X}_i$$
 has a label - Yes $|N_0|$
 $i_i = +1 - 1$



Want
$$W^*$$
 s.t. W^{k} , x_i , $L_i > 0$ $\forall i$
Scale W^* s.t. W^{k} , x_i , $L_i > 1$ $\forall i$
Distance of nearest point is $\frac{1}{|W_i^*|^2}$

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

Why does this converge ? Theorem Suppose JW* s.t W*. X:-li>1 Vi Perception algorithm finds W s.t. W.Xili>0 Vi in at most $r^2 |w^*|^2$ updates, where $r = \max[x_i]$ No guarantee on "quality" of w

Proof
Keep trade
$$\int_{0}^{\infty} w^{T}w^{*} , |w|^{2}$$

W current
eshade
 w^{k} is assumed
1. Each update to w increases $w^{T}w^{*}$ by at least 1
 $(w + x_{1}t_{1})^{T}w^{*} = w^{T}w^{*} + x_{1}^{T}t_{1}w^{*}$
Suppose $t_{1} = +1$ $w^{*}x_{1}^{T} > 1 > 1$ at least $+1$
 $t_{1} = -1$ $w^{4}x_{1}^{T} < -1 > 1$
8. Each update to w increase $|w|^{2}$ by at most r^{2}
 $(w + x_{1}t_{1})^{T}(w + x_{1}t_{1}) = |w|^{2} + 2x_{1}^{T}t_{1}w + |x_{1}t_{1}|^{2}$
 $\leq |w|^{2} + |x_{1}|^{2}$

Suppose we update W m Ames (grows by at least I each uplate) $W^{T}W^{*} \geq M$ (each update increases by at $|w|^2 \leq mr^2$ most r2) $m \leq |w||w^{2}|$ $\frac{m}{|w^*|} \leq |w| \leq \sqrt{m}r$ $\sqrt{m} \leq r \cdot |w^*|$ $m \leq r^2 |w^*|^2$

$$\langle x, y \rangle \longrightarrow \langle x, y, x^2 + y^2 \rangle$$

Z=1.5 plane separetes

 $\overline{\mathbf{x}} \mapsto \mathbf{\Psi}(\overline{\mathbf{x}})$ Given a transformen Perceptron W=D =×L +xj =×L+ -- $W = \{u_{1}, v_{2}, ..., u_{m}\} < x_{1}, x_{2}, ..., x_{m}\}$ Xtram Classify a new Z $(\overline{u} \cdot \overline{x}_{tran}) \cdot \overline{z} > 0$ w.z>0? $(\overline{u} \cdot \overline{\varphi(x)}) \cdot \varphi(z) > 0$

Strategy Try out vanous keenels (don't normy about that & looks (dee) When is k a kernel? Minim regnant - symmetrie Non constructure characterization - Mercer's Theom Constructure défension in terms of positre semdefinte matrice