DMML, 11 Fes 2020
Clustering - K Means algorithm
Randonly choose K centroids
for exch item i
assign to meanest centroid
Recompute centroids
Till certuods stabilize

Efficiency?
Incrementally adjust centroid with each new data item

If mean of n values is a, after new value, mean is $\left(n * a+v_{n+1}\right) / n+1$

What is a good choice for K ?
Measwing quality of clustering
Obvious measure - dispersion of clusters
Mean radius wot centroid Vanance
As K increases, any reasonable measure will improve
Typically, graph has
"elbow" (or "knee")

Problem of random starting centroids

- Bute force - repeat the process \& check for variation
- Systematically choose random pints far apart
(B). Iteration 1

(A). Random selection of seeds (centroids)

(C). Iteration 2

Having chosen j centroids so far

- choose next point proportional to distance from nearest centroid
Clam: Cost of this offset by quality improvement

What about non-numerie attributes?
Make waything boolean - 1-hot encoding Ped Blue Green Black
Real our set of words document model

1	0	0	0
0	0	1	0

$L_{\text {each }}$ document is over $\{0,1\}^{|v|}$
Sinilanty - no of positions where document agree

Prollem is again asymmety
English $|V| \sim 10^{5}$
Nowspapa anbcle ≤ 1000 wods
Almost all entries are O
01
a doninates by a lage mangin

a	b
	$c\|c\|$

Ignore a
Defure similanty as $\frac{d}{b+c+d}$
Jaceard distance/similanty

Solwhon - Noumaloce

K-Means can only disiner ellupsoidal chuotus

Be careful about scales accoros attusute

Bottom Up Clustering
Keeping combining

(A). Nested clusters

(B) Dendrogram nearest clusters to form a large one

Choose the level that is lest

Main challenge - how to defme inter-chuster distance compleiary

All if these essentially involve a compotation
of $\left|s_{1}\right| \times\left|s_{2}\right|$

Two sets of points S_{1}, S_{2}
Single Link

- Nearest pair across

$$
s_{1} \& s_{2}
$$

Complete Link

- Mono parimuse distance

Average Link

- Mean parime distance

Density based approach
Grow clusters based on similar dispersion
Define local density of a point

Define a threshold t
p ib "dense" of ard has $\geq t$ pts "Core points"

Start with core pout
Connect each core point with a directed edge to its r-abd points

Throw away direchom

Connected components are cluster

