Data Muning \& Machine Learning
40\% assignments
20% midenester cram
40% froel wan

Moodle
whweremi.ac-1ix/ Medhanan
\rightarrow Teadhy
Debjit Paria, Kapil Parase

Machune leanny
Estinatry penametces if a model foom laye suts of data Now date

$$
\xrightarrow{\text { Data }} \overbrace{\begin{array}{l}
\text { Model } \\
\text { template }
\end{array}}^{\substack{\text { Modd }} \text { Preduction } \text { Naw date }} \xrightarrow{\downarrow} \xrightarrow{\text { Mor }}
$$

Supervised leawning
Unsuparised learning Known/lalelled paot data Clustering

Market - Basket Analysis
People who buy X, also tad to buy Y
Students who fair X also fail Y

Items $\quad I=\left\{i_{i} i_{2}, \ldots, i_{N}\right\}$
Baskets $=$ Transactions $T=\left\{t_{1}, \ldots, t_{M}\right\}$ Each $t_{i} \subseteq I$ - set of items
$I=\left\{i_{1}, \ldots, l_{N}\right\} \quad T-\left\{t_{1}, \ldots, t_{M}\right\} \quad t_{i} \subseteq I$
People who by x also buy Y Assume $X, Y \in I$ single items, $x \neq y$
$\frac{\text { \#transactons wile } x, y}{\text { \# transactors nile } x} \geq$ threshold
How often does this happen?
Infrequent cowelations are not useful
Which items are frequent? Say $>1 \%$ of T

More generally - frequent sets of items (itemsets) Given I, T and a frequency threshold $f, 0 \leq f \leq 1$

Which $X \subseteq I$ appear in at least f. M transaction?
How to do tues?
Lory sequence of noses $12,37,22,12,37, \ldots N$ Say $N=10^{6}$
Which mules appear at least $\frac{10000}{\mathrm{~K}}$ times?

Mantain a dichonary
count $[n]=\#$ if tus n appeass
More smplisti verson.
Array n hist
Position is records frequeny of i
Suppose oun original publem is resticted to individual tems
for i in $\operatorname{range}(M)$:
for each x in t_{l} :
increment rout for x
N items - dictionary size $\leq N$

$$
\leq \sum_{i=1}^{M} \operatorname{size}\left(t_{i}\right)^{M}
$$

For subsets - count 2^{N} quantities
Space is a bottleneck
$I=\left\{l_{1} \ldots, l_{N}\right\} \quad N=10^{6}$
$T=\left\{t_{M}, t_{M}\right\} \quad M=10^{9}$
Assunce each ti has

$$
\text { size } \leq 10
$$

$f=0.01$ (i.e. 1%) - only frequent items
If i_{k} is frequent, it appeans in $0.01 \times 10^{9}=10^{7}$ transachos
M transachos - $10 \times$ in itens overall $=10^{10}$

$$
\frac{10^{10}}{107} \Rightarrow 10^{3} \text { - max numben of } \text { frequat itens }
$$

Simple observalion
A-PRLORI

If $\left\{i_{k}, i_{l}\right\}$ is a frequent set, So are $\left\{i_{k}\right\}$ \& $\left\{i_{l}\right\}$
If entren $\left\{i_{u}\right\}$ or $\{v e\}$ is infrequat, $\left\{i_{n}, l_{e}\right\}$ camrt be frequent

1008 frequat uterns $\rightarrow \frac{1000.999}{2}$ frequent pains

