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Neural networks

Acyclic network of perceptrons with non-linear activation functions
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Neural networks

Without loss of generality,
Assume the network is layered

All paths from input to output have the same length

Each layer is fully connected to the previous one
Set weight to 0 if connection is not needed

Structure of an individual neuron
Input weights w1, . . . ,wm, bias b, output z , activation value a
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Notation

Layers ` 2 {1, 2, . . . , L}
Inputs are connected first hidden layer, layer 1
Layer L is the output layer

Layer ` has m` nodes 1, 2, . . . ,m`

Node k in layer ` has bias b`k , output z
`
k and activation value a`k

Weight on edge from node j in level `�1 to node k in level ` is w `
kj
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Notation

Why the inversion of indices in the subscript w `
kj?

z`k = w `
k1a

`�1
1 + w `

k2a
`�1
2 + · · ·+ w `

km`�1
a`�1
m`�1

Let w `
k = (w `

k1,w
`
k2, . . . ,w

`
km`�1

)

and a`�1 = (a`�1
1 , a`�1

2 , . . . , a`�1
m`�1

)

Then z`k = w `
k · a`�1

Assume all layers have same number of nodes
Let m = max

`2{1.2,...,L}
m`

For any layer i , for k > mi , we set all of w `
kj , b

`
k , z

`
k , a

`
k to 0

Matrix formulation
2

664

z`1
z`2
· · ·
z`m

3

775 =

2

664

w `
1

w `
2

· · ·
w `

m

3

775

2

664

a`�1
1

a`�1
2
· · ·
a`�1
m

3

775
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Learning the parameters

Need to find optimum values for all weights w `
kj

Use gradient descent

Cost function C , partial derivatives
@C

@w `
kj

,
@C

@b`k

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

For instance, for training input (xi , yi ), sum-squared error is (yi � aLi )
2

Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

Each input xi incurs cost C(xi ), total cost is
1
n

nX

i=1

C(xi )

For instance, mean sum-squared error
1
n

nX

i=1

(yi � aLi )
2
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Learning the parameters

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

2 Total cost is average of individual input costs

With these assumptions:

We can write
@C

@w `
kj

,
@C

@b`k
in terms of individual

@aLi
@w `

kj

,
@aLi
@b`k

Can extrapolate change in individual cost C (x) to change in overall cost C — stochastic
gradient descent

Complex dependency of C on w `
kj , b

`
k

Many intermediate layers

Many paths through these layers

Use chain rule to decompose into local dependencies

y = g(f (x)) ) @g

@x
=

@g

@f

@f

@x
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Calculating dependencies

If we perturb the output z`j at node j in layer `, what is the impact on final output,
overall cost?

Focus on
@C

@z`j
— from these, we can compute

@C

@w `
kj

,
@C

@b`k
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Computing partial derivatives

Use chain rule to run backpropagation algorithm

Given an input, execute the network from left to right to compute all outputs

Using the chain rule, work backwards from right to left to compute all values of
@C

@z`j
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Applying the chain rule

Let �`j denote
@C

@z`j

Base Case

` = L, �Lj

Chain rule:
@C

@zLj
=

@C

@aLj

@aLj
@zLj

C =
1

n

nX

i=1

(yi � aLi )
2, so

@C

@aLj
= 2(yj � aLj )(�1) = 2(aLj � yj)

aLj = �(zLj ), so
@aLj
@zLj

= �0(zLj )

�(u) =
1

1 + e�u
, �0(u) =

@�(u)

@u
= �(u)(1� �(u)) Work this out!
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Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =
mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0(z`j )
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Applying the chain rule
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Finishing touches

What we actually need to compute are
@C

@w `
kj

,
@C

@b`k

@C

@w `
kj

=
@C

@z`k

@z`k
@w `

kj

= �`k
@z`k
@w `

kj

@C

@b`k
=

@C

@z`k

@z`k
@b`k

= �`k
@z`k
@b`k

We have already computed �`k , so what remains is
@z`k
@w `

kj

,
@z`k
@b`k

Since z`k =
mX

i=1

w `
kia

`�1
i + b`k , it follows that

@z`k
@w `

kj

= a`�1
j — terms with i 6= j vanish

@z`k
@b`k

= 1 — terms with i 6= j vanish
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Backpropagation

In the forward pass, compute all z`k , a
`
k

In the backward pass, compute all �`k , from which we can get all
@C

@w `
kj

,
@C

@b`k

Increment each parameter by a step � in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

Update parameters after each mini batch — stochastic gradient descent

Epoch — one pass through the entire training data
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Challenges

Backpropagation dates from mid-1980’s

Learning representations by back-propagating errors
David E. Rumelhart, Geo↵rey E. Hinton and Ronald J. Williams
Nature, 323, 533–536 (1986)

Computationally infeasible till advent of modern parallel hardware, GPUs for vector
(tensor) calculations

Vanishing gradient problem — cascading derivatives make gradients in initial layers very
small, convergence is slow

In rare cases, exploding gradient also occurs
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Pragmatics

Many heuristics to speed up gradient descent

Dynamically vary step size

Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters that can be tuned

Network structure: Number of layers, type of activation function

Training: Mini-batch size, number of epochs

Heuristics: Choice of optimizer for gradient descent
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Loss functions (costs) for neural networks

So far, we have assumed mean sum-squared error as the loss function.
Consider single neuron, two inputs x = (x1, x2)

C =
1

n

nX

i=1

(yi � ai )
2, where ai = �(zi ) = �(w1x

i
1 + w2x

i
2 + b)

For gradient descent, we compute
@C

@w1
,
@C

@w2
,
@C

@b
For j = 1, 2,

@C

@wj
=

2

n

nX

i=1

(yi � ai ) ·�
@ai
@wj

=
2

n

nX

i=1

(ai � yi )
@ai
@zi

@zi
@wj

=
2

n

nX

i=1

(ai � yi )�
0(zi )x

i
j

@C

@b
=

2

n

nX

i=1

(ai � yi )
@ai
@zi

@zi
@b

=
2

n

nX

i=1

(ai � yi )�
0(zi )
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Loss functions . . .

@C

@wj
=

2

n

nX

i=1

(ai � yi )�
0(zi )x

i
j ,

@C

@b
=

2

n

nX

i=1

(ai � yi )�
0(zi )

Each term in
@C

@w1
,
@C

@w2
,
@C

@b
is proportional to �0(zi )

Ideally, gradient descent should take large steps when a� y is large

�(z) is flat at both extremes

If a is completely wrong,
a ⇡ (1� y), we still have �0(z) ⇡ 0

Learning is slow even when current
model is far from optimal
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Cross entropy

A better loss function

C (a, y) =

(
� ln(a), if y = 1

� ln(1� a), if y = 0

If a ⇡ y , C (a, y) ⇡ 0 in both cases
If a ⇡ 1� y , C (a, y) ! 1 in both cases

Combine into a single equation

C (a, y) = �[y ln(a) + (1� y) ln(1� a)]

y = 1 ) second term vanishes, C = � ln(a)
y = 0 ) first term vanishes, C = � ln(1� a)

This is called cross entropy
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Cross entropy and gradient descent

C = �[y ln(�(z)) + (1� y) ln(1� �(z))]

@C

@wj
=

@C

@�

@�

@wj
= �


y

�(z)
� 1� y

1� �(z)

�
@�

@wj

= �


y

�(z)
� 1� y

1� �(z)

�
@�

@z

@z

@wj

= �


y

�(z)
� 1� y

1� �(z)

�
�0(z)xj

= �

y(1� �(z))� (1� y)�(z)

�(z)(1� �(z))

�
�0(z)xj
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Cross entropy and gradient descent . . .

@C

@wj
= �


y(1� �(z))� (1� y)�(z)

�(z)(1� �(z))

�
�0(z)xj

Recall that �0(z) = �(z)(1� �(z))

Therefore,
@C

@wj
= �[y(1� �(z))� (1� y)�(z)]xj

= �[y � y�(z)� �(z) + y�(z)]xj
= (�(z)� y)xj
= (a� y)xj

Similarly,
@C

@b
= (a� y)

Thus, as we wanted, the gradient is proportional to a� y

The greater the error, the faster the learning rate
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The greater the error, the faster the learning rate
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Cross entropy . . .

Overall,

@C

@wj
=

1

n

nX

i=1

(ai � yi )x
i
j

@C

@b
=

1

n

nX

i=1

(ai � yi )

Cross entropy allows the network to learn faster when the model is far from the true one

Other theoretical justifications to justify using cross entropy

Derive from goal of maximizing log-likelihood of model
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Specialized architectures

y.at#*EHrim:nTmE..::..Same weight &
blasts

Shand parameter

Convolution Naval Network -CNN

2012 - AlexNet


