
UNSUPERVISED LEARNING

OUTLIERS

APPLICATIONS



Outliers

• Values outside the normal range

• Statistically, define in terms of deviation 
from mean or median

• Gaussian distribution – number of 
standard deviations from mean

• Box and whisker plots – outer and inner 
fences based on median, interquartile 
(IQR) value
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Outliers and clustering

• Outliers are points that lie outside 
natural clusters

• K Means – far away from all 
centroids

• But outliers can distort the 
clustering process

• Density based clustering – not 
connected to any core point

• But density is applied 
uniformly
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Outliers and density

• An outlier is less dense than its nearest 
neighbours

• But difference in density may be local

• A distance metric to eliminate o2 could 
make all of C1 outliers

• C1 has 400 points, C2 has 100 points

• Larger distance would make all of C2
outliers with respect to C1
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Outliers and density

• For clustering, we defined a radius Eps
and looked for MinPts neighbours 
within that ball

• Instead, fix MinPts and find smallest 
ball with that many neighbours

• Compare radius(p) with radius of its 
neighours

• A is an outlier because its radius is 
much more than that of its neighbours
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Outliers and density

• Local outlier factor LOF(p)

• The smaller this ratio, the more likely 
that p is an outlier

• Comparison is local to neighbourhood, 
so this can deal with different densities 
across range of data
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Clustering using

Mixture of

Gaussians

Examples : a Iris dataset
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Outlier detection

using
mixture of
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Semi-supervised learning

• Labelling training data is a bottleneck of 
supervised learning

• Handwritten digits 0,1,...,9

• 1797 images

• Standard logistic regression model has 
96.9% accuracy

• Suppose we take 50 random samples as 
training set

• Logistic regression gives 83.3%
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Semi-supervised learning

• Instead of 50 random samples, 50 
clusters using K means

• Use image nearest to each centroid as 
training set

• 50 representative images

• Logistic regression accuracy jumps to 
92.2%



Semi-supervised learning

• Propagate representative image label to 
entire cluster

• Logistic regression improves to 93.3%

• Propagage representive image label to 
only 20% items closest to centroid

• Logistic regression improves to 94%

• Only 50 actual labels used, about 5 per 
class!



Image segmentation

• An image is a matrix of pixels

• Each pixel has (R,G,B) values

• K means clustering on these values 
merges colours
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Image segmentation

• An image is a matrix of pixels

• Each pixel has (R,G,B) values

• K means clustering on these values 
merges colours

• With 10 clusters, not much change

• Same with 8

• At 6 colours, ladybug red goes

• 4 colours

• Finally 2 colours, flower and rest
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Dimensionality reduction

Principal Component Anaylsis — transform d-dimensional input to k-dimensional input,

preserving essential features

Example: PCA projection of blue points in 3D to black points in 2D
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Dimensionality reduction . . .

Unsupervised preprocessing technique — may make later steps easier, like simplifying

classification boundaries

Swiss roll dataset: dimensionality reduction helps

Swiss roll dataset: dimensionality reduction does not help
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Singular Value Decomposition (SVD)

Input matrix M, dimensions n ⇥ d

Rows are items, columns are features

Decompose M as UDV>

D is a k ⇥ k diagonal matrix, positive real entries

U is n ⇥ k , V is d ⇥ k

Columns of U, V are orthonormal — unit vectors, mutually orthogonal

Interpretation

Columns of V correspond to new abstract features

Rows of U describe decomposition of terms across features

For columns ui of U and vi of V , ui · v>
i is an n ⇥ d matrix, like M

ui · v>
i describes components of rows of M along direction vi
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Singular vectors

Unit vectors passing through the origin

Want to find “best” k singular vectors to represent feature space

Suppose we project ai = (ai1, ai2, . . . , aid) onto v through origin

Minimizing distance of ai from v is equivalent to maximizing the projection of ai onto v

Length of the projection is ai · v
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Singular vectors . . .

Sum of squares of lengths of projections of all rows in M onto v — |Mv |2

First singular vector — unit vector through origin that maximizes the sum of projections

of all rows in M

v1 = arg max
|v |=1

|Mv |

Second singular vector — unit vector through origin, perpendicular to v1, that maximizes

the sum of projections of all rows in M

v2 = arg max
v?v1; |v |=1

|Mv |

Third singular vector — unit vector through origin, perpendicular to v1, v2, that
maximizes the sum of projections of all rows in M

v3 = arg max
v?v1,v2; |v |=1

|Mv |
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Singular vectors . . .

With each singular vector vj , associated singular value is �j = |Mvj |

Repeat r times till max
v?v1,v2,...,vr ; |v |=1

|Mv | = 0

r turns out to be the rank of M

Vectors {v1, v2, . . . , vr} are orthonormal right singular vectors

Our greedy strategy provably produces “best-fit” dimension r subspace for M

Dimension r subspace that maximizes content of M projected onto it

Corresponding left singular vectors are given by ui =
1

�i
Mvi

Can show that {u1,u2, . . . ,ur} are also orthonormal
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Singular Value Decomposition

M, dimension n ⇥ d , of rank r uniquely decomposes as M = UDV>

V = [v1 v2 · · · vr ] are the right singular vectors

D is a diagonal matrix with D[i , i ] = �i , the singular values

U = [u1 u2 · · · ur ] are the left singular vectors

M

n ⇥ d
=

U

n ⇥ r

D

r ⇥ r

V>

r ⇥ d
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Rank-k approximation

M has rank r , SVD gives rank r decomposition

Singular values are non-increasing — �1 � �2 � · · · � �r

Suppose we retain only k largest ones

We have

Matrix of first k right singular vectors Vk = [v1 v2 · · · vk ],
Corresponding singular values �1,�2, . . . ,�k

Matrix of k left singular vectors Uk = [u1 u2 · · · uk ]

Let Dk be the k ⇥ k diagonal matrix with entries �1,�2, . . . ,�k

Then UkDkV>
k is the best fit rank-k approximation of M

In other words, by truncating the SVD, we can focus on k most significant features

implicit in M
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Summary

Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any matrix

M

Principal Component Analysis uses SVD for dimensionality reduction

Unsupervised technique — often helps simplify the problem, but may not

SVD/PCA can only compress features that have a linear relationship

More general techniques based on neural networks — autoencoders
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