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Qutliers

e Valuesoutside the normal range

e Statistically, define in terms of deviation
from mean or median

e Gaussian distribution— number of
standard deviationsfrom mean

e Box and whisker plots— outer andinner
fences based on median, interquartile
(IQR) value
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Outliers and clustering

e QOutliersare pointsthat lie outside

natural clusters T S0 Tl .
"o 0 ' o I o/utller
' S~a
e K Means— far away from all Lo+ % + D
. ‘0 o o o o
centroids .0 I s LR N ”
But outliers can distort the .

clustering process
MinPts = 4

* Density based clustering— not
connected to any core point |-

But density is applied 8

uniformly =
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Outliers and density Cvidan do b s»ﬁ LJ:
]
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e An outlieris less dense than its nearest

neighbours A @ L
e But difference in density may be local 7. .

e A distance metric to eliminateo, could
make all of C, outliers

e C, has 400 points, C, has 100 points

e Larger distance would make all of C,
outliers with respect to C,
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Outliers and density
]

e For clustering, we defined a radius Eps
and looked for [MinPts heighbours
within that ball

e Instead, fix MinPts and find smallest
ball with that many neighbours

e Compare radius(p) with radius of its
neighours

e Ais anoutlier because its radiusis
much more than that of its neighbours . \ K
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Outliers and density
]

e Localoutlierfactor LOF(p) ~  ===mmeeel

p Mean radius of MinPts-neighbours(p) ¢ ‘) \\‘
O — radius(p) = - .
e The smaller this ratio, the more likely ’ \:”\.
that p is an outlier : _‘ ““".‘ ‘.
e Comparisonislocal to neighbourhood, ; =T N .
so this can deal with different densities ] R Qe
across range of data ' v
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Semi-supervised learning
]

e Labellingtraining datais a bottleneck of
supervised learning

e Handwrittendigits 0,1,...,9 Q(l )

’1797 i}nages

e Standard logistic regression model has
96.9% accuracy
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e Suppose we take 50 random samples as
training set

e Logistic regression gives 83.3%
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Semi-supervised learning
]

e Instead of 50 random samples, 50
clusters using K means

e Use image nearest to each centroid as
trainingset

- 50 representative images

e Logistic regression accuracy jumps to
92.2%
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Semi-supervised learning

e Propagaterepresentativeimage Tabel to
entire cluster

e Logistic regression improvesto 93.3%

e Propagage representive image label to
only 20% items closest to centroid

e Logistic regression improvesto 94%

e Only 50 actual labels used, about 5 per
class!
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Image segmentation
]

e An image is a matrix of pixels
e Each pixel has (R,G,B) values

e K means clustering on these values
merges colours
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Image segmentation

e An image is a matrix of pixels

Each pixel has (R,G,B) val
e Each pixel has (R,G,B) values 6 colors

e K means clustering on these values
merges colours

e With 10 clusters, not much change
e Same with 8

e At 6 colours, ladybugred goes
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Image segmentation

e An image is a matrix of pixels

e Each pixel has (R,G,B) values

4 colors

e K means clustering on these values
merges colours

e With 10 clusters, not much change
e Same with 8
e At 6 colours, ladybugred goes

e 4 colours
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Image segmentation

e An image is a matrix of pixels

e Each pixel has (R,G,B) values

2 colors

e K means clustering on these values
merges colours

e With 10 clusters, not much change
e Same with 8
e At 6 colours, ladybugred goes

e 4 colours

e Finally 2 colours, flower and rest

cmn; &
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Dimensionality reduction

m Principal Component Anaylsis — transform d-dimensional input to k-dimensional input,
preserving essential features
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Dimensionality reduction

m Principal Component Anaylsis — transform d-dimensional input to k-dimensional input,
preserving essential features

m Example: PCA projection of blue points in 3D to black points in 2D
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Dimensionality reduction . ..

m Unsupervised preprocessing technique — may make later steps easier, like simplifying
classification boundaries
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Dimensionality redu

m Unsupervised preprocessing technique — may make later steps easier, like simplifying
classification boundaries

m Swiss roll dataset: dimensionality reduction helps

v
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d x
\

m Rows are items, columns are features
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d A~ n)(k_

m Rows are items, columns are features

m Decompose M as UE@ nxl }(K‘of. kxd
m D is a k x k diagonal matrix, positive real entries (_U‘\'] VT- \/ A)C le
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features k
m Decompose M as UDV' " N

m D is a k x k diagonal matrix, positive real entries d’

m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation

m Columns of V correspond to new abstract features
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Singular Value Decomposition (SVD)

<o
® Input matrix M, dimensions n x d 4 k’

m Rows are items, columns are feature\. l \ 1 }
m Decompose M as UDV' "

m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visdx k &

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation U
m Columns of V correspond to new abstract features (VL
Mawls

m Rows of U describe decomposition of bms across features
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features \, Z
M: = Ub L

m Decompose M as UDV' "
m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation
m Columns of V correspond to new abstract features

m Rows of U describe decomposition of terms across features

T

m For columns u; of U and v; of V, u; - v;

. is an n x d matrix, like M
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features

m Decompose M as UDV' "
m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation
m Columns of V correspond to new abstract features

m Rows of U describe decomposition of terms across features

m For columns u; of U and v; of V, u; - v."

. is an n x d matrix, like M

mu- v,-T describes components of rows of M along direction v;
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Singular vectors

m Unit vectors passing through the origin
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Singular vectors

m Unit vectors passing through the origin

m Want to find “best” k singular vectors to represent feature space

m Suppose we project a; = (a1, a2, - . -

,ai4) onto v through origin

Qi

proj;
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Singular vectors

m Unit vectors passing through the origin

m Want to find “best” k singular vectors to represent feature space

m Suppose we project a; = (a1, a2, - . -

Qi

T
proj;

,ai4) onto v through origin

m Minimizing distance of a; from v is equivalent to maximizing the projection of a; onto v
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Singular vectors

m Unit vectors passing through the origin

m Want to find “best” k singular vectors to represent feature space

m Suppose we project a; = (a1, a2, - . -

Qi

T
proj;

,ai4) onto v through origin

m Minimizing distance of a; from v is equivalent to maximizing the projection of a; onto v

m Length of the projection is a; - v
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

m First singular vector — unit vector through origin that maximizes the sum of projections
of all rows in M

v; = arg max |[Mv|
v|=1
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

m First singular vector — unit vector through origin that maximizes the sum of projections
of all rows in M

v; = arg max |[Mv|
v|=1

m Second singular vector — unit vector through origin, perpendicular to v;, that maximizes
the sum of projections of all rows in M

vo =arg max |[My|
vlvy; |v|=1
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

m First singular vector — unit vector through origin that maximizes the sum of projections

of all rows in M
vy = arg mi)i [Mv]| , lel - ’MVZI>IMI5I

m Second singular vector — unit vector through origin, perpendicular to v;, that maximizes

the sum of projections of all rows in M

vo =arg max |[My|
vlvy; |v|=1

m Third singular vector — unit vector through origin, perpendicular to v;, v», that
maximizes the sum of projections of all rows in M

v3 = arg max |Mv|
vlvi,w; |v|=1
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Singular vectors . ..

m With each singular vector v;, associated singular value i 6 A
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|

m Repeat r times till max IMv| =0
vlivi,va,..,v; |v|=1

m r turns out to be the rank of M

m Vectors {v1, vo,..., v, } are orthonormal right singular vectors
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|

m Repeat r times till max IMv| =0
vlivi,va,..,v; |v|=1

m r turns out to be the rank of M

m Vectors {v1, vo,..., v, } are orthonormal right singular vectors

m Our greedy strategy provably produces “best-fit" dimension r subspace for M

m Dimension r subspace that maximizes content of M projected onto it
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|

m Repeat r times till max IMv| =0
vlivi,va,..,v; |v|=1

m r turns out to be the rank of M

m Vectors {v1, vo,..., v, } are orthonormal right singular vectors

Our greedy strategy provably produces “best-fit" dimension r subspace for M

m Dimension r subspace that maximizes content of M projected onto it

. . ) 1
Corresponding left singular vectors are given by u; = —My;
o

Can show that {uy, up, ..., u,} are also orthonormal
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Singular Value Decomposition

m M, dimension n x d, of rank r uniquely decomposes as M = UDV' "
m V =[v; vo - - v,] are the right singular vectors

m D is a diagonal matrix with D[/, /] = o;, the singular values

m U=[u u - u,] are the left singular vectors
D vT
M U rx rxd
nxd B nxr (
T, M|
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Rank- approximation

m M has rank r, SVD gives rank r decomposition
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Rank- approximation

m M has rank r, SVD gives rank r decomposition
m Singular values are non-increasing — o1 > 0o > -+ > o,

m Suppose we retain only k largest ones

m We have
m Matrix of first k right singular vectors Vj = [vi vo -+ v],
m Corresponding singular values 01,07, ..., 0
m Matrix of k left singular vectors Uy = [ty up -+ wg]
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Rank- approximation

m M has rank r, SVD gives rank r decomposition

Singular values are non-increasing — o1 > 0y > --- > o,
m Suppose we retain only k largest ones

m We have
m Matrix of first k right singular vectors Vj = [vi vo -+ v],
m Corresponding singular values 01,07, ..., 0

m Matrix of k left singular vectors Uy = [ty up -+ wg]
m Let Dy be the k x k diagonal matrix with entries 01,02, ...,0%

m Then U, Dy VkT is the best fit rank-k approximation of M
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Rank- approximation

m M has rank r, SVD gives rank r decomposition
m Singular values are non-increasing — o1 > 0o > -+ > o,
m Suppose we retain only k largest ones

m We have
m Matrix of first k right singular vectors Vj = [vi vo -+ v],
m Corresponding singular values 01,07, ..., 0

m Matrix of k left singular vectors Uy = [ty up -+ wg]
m Let Dy be the k x k diagonal matrix with entries 01,02, ...,0%
m Then U, Dy VkT is the best fit rank-k approximation of M

m In other words, by truncating the SVD, we can focus on k most significant features
implicit in M
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m Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any matrix
M

Principal Component Analysis uses SVD for dimensionality reduction

m Unsupervised technique — often helps simplify the problem, but may not

SVD/PCA can only compress features that have a linear relationship

m More general techniques based on neural networks — autoencoders
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