Lecture 9: Evaluating Classifiers

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

Testing a supervised learning model

- How do we validate software?
 - Test suite of carefully selected inputs
 - Compare output with expected answers
- What about classification models?
 - By definition, deploy on data where the outcome is unknown
 - If expected answer available, have a deterministic solution, model not needed!
- On what basis can we evaluate a supervised learning model?

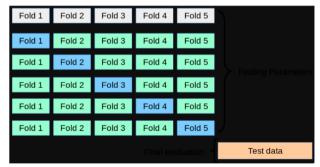
- Training data is labelled
 - No other source of inputs with expected answers
- Segregate some training data for testing
 - Terminology: training set and test set
 - Build model using training set, evaluate on test set
- Creating the test set
 - Need to choose a random sample
 - Can further use stratified sampling, preserve relative ratios (e.g., age wise distribution)
 - ML libraries can do this automatically

Creating a test set

- How large should the test set be?
 - Typically 20-30% of labelled data
- Depends on labelled data available
 - Need enough training data to build the model

Cross validation

- Partition labelled data into k chunks
- Hold out one chunk at a time
- Build k models, using k-1 chunks for training, 1 for testing
- Useful if labelled data is scarce



What are we measuring?

- Accuracy is an obvious measure
 - Fraction of inputs where classification is correct
- Classifiers are often used in asymmetric situations
 - Less than 1% of credit card transactions are fraud
- "Is this transaction a fraud?"
 - Trivial classifier always answer "No"
 - More than 99% accurate, but useless!

Card Fraud Worldwide 2010–2027

CENTS PER \$100 OF TOTAL VOLUME

Lecture 9: Evaluating Classifiers

Catching the minority case

- The minority case is the useful case
 - Assume question is phrased so that minority answer is "Yes"
 - Want to flag as many "Yes" cases as possible
- Aggressive classifier
 - Marks borderline "No" as "Yes"
 - False positives
- Cautious classifier
 - Marks borderline "Yes" as "No"
 - False negatives

Card Fraud Worldwide 2010–2027

CENTS PER \$100 OF TOTAL VOLUME

Lecture 9: Evaluating Classifiers

Confusion matrix

- Four possible combinations
 - Actual answer: Yes / No
 - Prediction: Yes / No
- Record all four possibilities in confusion matrix
 - Correct answers
 - True positives, true negatives
 - Wrong answers
 - False positives, false negatives

	Classified	Classified	
	positive	negative	
Actual	True Positive	False Negative	
positive	(TP)	(FN)	
Actual	False Positive	True Negative	
negative	(FP)	(TN)	

Precision

What percentage of positive predictions are correct?

 $\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$

Recall

What percentage of actual positive cases are discovered?

$\frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}}$

	Classified	Classified negative	
	positive		
Actual	True Positive	False Negative	
positive	(TP)	(FN)	
Actual	False Positive	True Negative	
negative	(FP)	(TN)	

Precision 1, Recall 0.01

	Classified positive	Classified negative
Actual positive	1	99
Actual negative	0	900

Performance measures

- Precision 1, Recall 0.01
- Recall up to 0.4, but precision down to 0.29

	Classified positive	Classified negative
Actual positive	40	60
Actual negative	100	800

- Precision 1, Recall 0.01
- Recall up to 0.4, but precision down to 0.29
- Recall up to 0.99, but precision down to 0.165
- Precision-recall tradeoff
 - Strict classifiers : fewer false positives (high precision), miss more actual positives (low recall)
 - Permissive classifiers : catch more actual positives (high recall) but more false positives (low precision)

	Classified positive	Classified negative
Actual positive	99	1
Actual negative	500	400

- Which measure is more useful?
 - Depends on situation
- Hiring
 - Screening test: high recall
 - Interview: high precision
- Medical diagnosis
 - Immunization: high recall
 - Critical illness diagnosis: high precision

	Classified positive	Classified negative	
Actual	True Positive	False Negative	
		Ŭ	
positive	(TP)	(FN)	
Actual	False Positive	True Negative	
negative	(FP)	(TN)	

Other measures, terminology

- Recall is also called sensitivity
- Accuracy: (TP+TN)/(TP+TN+FP+FN)
- Specificity: TN/(TN+FP)
- Threat score: TP/(TP+FP+FN)
 - TN usually majority, ignore, not useful

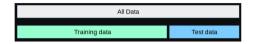
	Classified	Classified	
	positive	negative	
Actual	True Positive	False Negative	
positive	(TP)	(FN)	
Actual	False Positive	True Negative	
negative	(FP)	(TN)	

F Score

- A single combined score
- Harmonic mean of precision, recall

Summary

- Need to carve out a test set to evaluate a classifier
- Can use cross-validation if labelled data is scarce
- Accuracy is not a very useful metric categories are asymmetric
- Confusion matrix captures different types of correct and wrong answers
- Precision and recall are most commonly used measures
- Tradeoff one for the other based on the situation



Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
			Test data		

