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Mixture models

m Probabilistic process — parameters ©
m Tossing a coin with © = {Pr(H)} = {p}

m Perform an experiment
m Toss the coin N times, H T HH --- T

m Estimate parameters from observations
m From h heads, estimate p = h/N
m Maximum Likelihood Estimator (MLE)

m What if we have a mixture of two random processes
m Two coins, ¢; and ¢, with Pr(H) = p; and p, respectively
m Repeat N times: choose ¢; with probability 1/2 and toss it
m Outcome: N tosses of ¢; interleaved with N, tosses of ¢, Ny + No = N

m Can we estimate p; and p,?
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Mixture models . ..

m Two coins, ¢; and ¢, with Pr(H) = p; and p», respectively
m Sequence of N interleaved cointosses H T HH --- HH T

m If the sequence is labelled, we can estimate pi, p» separately
mHTTHHTHTHHTHTHTHHTHT
mp=8/12=2/3, p,=3/8

m What the observation is unlabelled?
m HTTHHTHTHHTHTHTHHTHT

m lterative algorithm to estimate the parameters
m Make an initial guess for the parameters
m Compute a (fractional) labelling of the outcomes

m Re-estimate the parameters
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Expectation Maximization (EM)

m lterative algorithm to estimate the parameters
m Make an initial guess for the parameters
m Compute a (fractional) labelling of the outcomes

m Re-estimate the parameters
mHTTHHTHTHHTHTHTHHTHT

m Initial guess: p;1 =1/2, pp =1/4
Pricc=T)=q1=1/2, Pr(cc = T) = q» = 3/4,
For each H, likelihood it was c¢;, Pr(c; | H), is p;/(p1 + p2)

m For each T, likelihood it was ¢;, Pr(c; | T), is q;/(q1 + q2)
m Assign fractional count Pr(c; | H) to each H: 2/3 x ¢1, 1/3 X

m Likewise, assign fractional count Pr(c; | T) to each T: 2/5 % ¢, 3/5 X &
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Expectation Maximization (EM)

mHTTHHTHTHHTHTHTHHTHT

Initial guess: p1 = 1/2, pp =1/4

m Fractional counts: each H is 2/3 x ¢, 1/3 x ¢, each T: 2/5 x c1, 3/5 x &

Add up the fractional counts
¢ 11-(2/3) =22/3 heads, 9 (2/5) = 18/5 tails
m c: 11-(1/3) =11/3 heads, 9-(3/5) = 27/5 tails

m Re-estimate the parameters

22/3
— 2 _110/164=0.67, g1 =1 p = 0.33
" P 531185 / 7 P
11/3
— T/ _55/136=0.40, gy = 1 — p» = 0.60
P2 =mgar5 0 & P2

m Repeat until convergence
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Expectation Maximization (EM)

m Mixture of probabilistic models (My, Ma, ..., M) with parameters
© = (01,02,...,0k)

m Observation O = 0105 ... 0y

Expectation step

m Compute likelihoods Pr(M;|o;) for each M;, o;

m Maximization step

m Recompute MLE for each M, using fraction of O assigned using likelihood

m Repeat until convergence
m Why should it converge?

m If the value converges, what have we computed?
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EM — another example

m Two biased coins, choose a coin m If we know the breakup, we can separately
and toss 10 times, repeat 5 times compute MLE for each coin

HE T TRH KL H 5H,5T

Q
<
o f,= 5—2=0.45
O
<

HHHHTHHHHH OH, 1T 0,=54 1 6= 0-80

HTHHHHHTHH 8H,2T

HTHTTTHHTT 4H,6T
7H,3T

THHHTHHHTH
- 24H,6T 9H, 11T
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EM — another example

m Expectation-
Maximization

0.45 x o 0.55 x Q ~02H 22T ~28H, 28T
o,soxo 0.20 x Q ~72H,08T ~1.8H,02T
O.73x° 0.27 x o ~59H, 15T ~21H,05T
0.35x° O.GSXQ ~14H,21T ~26H,39T

nH — nrt
0™ (1 —0) 6°=0.60 O.GSXQ 0.35x Q ~45H,19T ~25H, 14T
m Assign each sequence 9«»_050 ~21.3H,86T ~11.7H,84T

proportionately @

HTTTHHTHTH
HHHHTHHHHH
HTHHHHHTHH
HTHTTTHHTT
THHHTHHHTH

m Initial estimates,
0, =0.6, 0g = 0.5

m Compute likelihood
of each sequence:

A0 21.3
6"~ 55—~ 0.71
m Converge to 21.3+86
04 =0.8, 0g = 0.52 6%~ 117 ___ 058 6°=0.80

s 784 '
@"/ 6,~0.52
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EM — mixture of Gaussians

A
m Sample uniformly from multiple Gaussians,

N(,M,’,Ui)

For simplicity, assume all o; = o

m N sample points z1, 2, ..., zy

v

m Make an initial guess for each i,

Pr(zi | 1) = exp(—502 (21 — 1)?)
Pr(z; | 1)
>k Prizi | p)
2. CijZi
> Cif

m Update estimates for /;; and repeat

Pr(pj | Z,') =Cj=

MLE of 1i; is sample mean,

Madhavan Mukund Lecture 22: Expectation Maximization DMML Aug—Dec 2020 9/10



m Mixture models interleave observations generated using different parameters

m Observations are unlabelled, so we cannot segregate and compute MLEs
individually
m EM algorithm is an iterative approach to estimate the parameters
m Make an initial estimate for the parameter
m Repeat E and M steps till convergence

m Compute expectation of observation using current values

Recompute MLEs based on proportional allocation of observations to each model

m We shall explore why this works
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