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Mixture models

Probabilistic process — parameters Θ

Tossing a coin with Θ = {Pr(H)} = {p}

Perform an experiment

Toss the coin N times, H T H H · · · T

Estimate parameters from observations

From h heads, estimate p = h/N

Maximum Likelihood Estimator (MLE)

What if we have a mixture of two random processes

Two coins, c1 and c2, with Pr(H) = p1 and p2, respectively

Repeat N times: choose ci with probability 1/2 and toss it

Outcome: N1 tosses of c1 interleaved with N2 tosses of c2, N1 + N2 = N

Can we estimate p1 and p2?
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Mixture models . . .

Two coins, c1 and c2, with Pr(H) = p1 and p2, respectively

Sequence of N interleaved coin tosses H T H H · · · H H T

If the sequence is labelled, we can estimate p1, p2 separately

H T T H H T H T H H T H T H T H H T H T

p1 = 8/12 = 2/3, p2 = 3/8

What the observation is unlabelled?

H T T H H T H T H H T H T H T H H T H T

Iterative algorithm to estimate the parameters

Make an initial guess for the parameters

Compute a (fractional) labelling of the outcomes

Re-estimate the parameters
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Expectation Maximization (EM)

Iterative algorithm to estimate the parameters

Make an initial guess for the parameters

Compute a (fractional) labelling of the outcomes

Re-estimate the parameters

H T T H H T H T H H T H T H T H H T H T

Initial guess: p1 = 1/2, p2 = 1/4

Pr(c1 = T ) = q1 = 1/2, Pr(c2 = T ) = q2 = 3/4,

For each H, likelihood it was ci , Pr(ci | H), is pi/(p1 + p2)

For each T , likelihood it was ci , Pr(ci | T ), is qi/(q1 + q2)

Assign fractional count Pr(ci | H) to each H: 2/3× c1, 1/3× c2

Likewise, assign fractional count Pr(ci | T ) to each T : 2/5× c1, 3/5× c2
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Expectation Maximization (EM)

H T T H H T H T H H T H T H T H H T H T

Initial guess: p1 = 1/2, p2 = 1/4

Fractional counts: each H is 2/3× c1, 1/3× c2, each T : 2/5× c1, 3/5× c2

Add up the fractional counts

c1: 11 · (2/3) = 22/3 heads, 9 · (2/5) = 18/5 tails

c2: 11 · (1/3) = 11/3 heads, 9 · (3/5) = 27/5 tails

Re-estimate the parameters

p1 =
22/3

22/3 + 18/5
= 110/164 = 0.67, q1 = 1− p1 = 0.33

p2 =
11/3

11/3 + 27/5
= 55/136 = 0.40, q2 = 1− p2 = 0.60

Repeat until convergence
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Expectation Maximization (EM)

Mixture of probabilistic models (M1,M2, . . . ,Mk) with parameters
Θ = (θ1, θ2, . . . , θk)

Observation O = o1o2 . . . oN

Expectation step

Compute likelihoods Pr(Mi |oj) for each Mi , oj

Maximization step

Recompute MLE for each Mi using fraction of O assigned using likelihood

Repeat until convergence

Why should it converge?

If the value converges, what have we computed?
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EM — another example

Two biased coins, choose a coin
and toss 10 times, repeat 5 times

If we know the breakup, we can separately
compute MLE for each coin
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EM — another example

Expectation-
Maximization

Initial estimates,
θA = 0.6, θB = 0.5

Compute likelihood
of each sequence:
θnH (1− θ)nT

Assign each sequence
proportionately

Converge to
θA = 0.8, θB = 0.52
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EM — mixture of Gaussians

Sample uniformly from multiple Gaussians,
N (µi , σi )

For simplicity, assume all σi = σ

N sample points z1, z2, . . . , zN

Make an initial guess for each µj

Pr(zi | µj) = exp(− 1
2σ2 (zi − µj)2)

Pr(µj | zi ) = cij =
Pr(zi | µj)∑
k Pr(zi | µk)

MLE of µj is sample mean,

∑
i cijzi∑
i cij

Update estimates for µj and repeat
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Summary

Mixture models interleave observations generated using different parameters

Observations are unlabelled, so we cannot segregate and compute MLEs
individually

EM algorithm is an iterative approach to estimate the parameters

Make an initial estimate for the parameter

Repeat E and M steps till convergence

Compute expectation of observation using current values

Recompute MLEs based on proportional allocation of observations to each model

We shall explore why this works
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