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Limitations of classification models

m Bias : Expressiveness of model limits classification

m For instance, linear separators

m Variance: Variation in model based on sample of training data

m Shape of a decision tree varies with distribution of training inputs

Models with high variance are expressive but unstable

m In principle, a decision tree can capture an arbitrarily complex classification
criterion

m Actual structure of the tree depends on impurity calculation
m Danger of overfitting: model tied too closely to training set

m s there an alternative to pruning?
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Ensemble models

m Sequence of independent training data sets Dy, D>, ..., D
m Generate models My, Mo, ..., My

m Take this ensemble of models and “average” them
m For regression, take the mean of the predictions

m For classification, take a vote among the results and choose the most popular one

Challenge: Infeasible to get large number of independent training samples

m Can we build independent models from a single training data set?
m Strategy to build the model is fixed

m Same data will produce same model
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Bootstrap Aggregating = Bagging

m Training data has N\ items
m D= {dl,dQ,...,dN}

m Pick a random sample with replacement
m Pick an item at random (probability )

m Put it back into the set
m Repeat K times

m Some items in the sample will be repeated

m If sample size is same as data size (K = V), expected number of distinct items
1
is(l—-)-N
s (1)
m Approx 63.2%
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Bootstrap Aggregating = Bagging

m Sample with replacement of size N : bootstrap sample

m Approx 2/3 of full training data

m Take k such samples

Build a model for each sample

m Models will vary because each uses different training data

m Final classifier: report the majority answer

m Assumptions: binary classifier, k odd

Provably reduces variance
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Bagging with decision trees
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Bagging with decision trees
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Bagging with decision trees
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Bagging with decision trees
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Bagging with decision trees
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When to use bagging

m Bagging improves performance when there is high variance

m Independent samples produce sufficiently different models

m A model with low variance will not show improvement
m k-nearest neighbour classifier
m Given an unknown input, find k nearest neighbours and choose majority

m Across different subsets of training data, variation in k nearest neighbours is
relatively small

m Bootstrap samples will produce similar models
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Random Forest

m Applying bagging to decision trees with a further twist

m As before, k bootstrap samples Dy, Dy, ..., Dy

m For each D;, build decision tree T; as follows

Each data item has M attributes

Normally, choose maximum impurity gain among M attributes, then best among
remaining M — 1, ...

Instead, fix a small limit m < M — say m = log, M + 1
At each level, choose a random subset of available attributes of size m
Evaluate only these m attributes to choose next query

No pruning — build each tree to the maximum

m Final classifier: vote on the results returned by 71, Tp, ..., Tk
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Random Forest . ..

m Theoretically, overall error rate depends on two factors

m Correlation between pairs of trees — higher correlation results in higher overall
error rate

m Strength (accuracy) of each tree — higher strength of individual trees results in
lower overall error rate

m Reducing m, the number of attributes examined at each level, reduces
correlation and strength

m Both changes influence the error rate in opposite directions
m Increasing m increases both correlation and strength

m Search for a value of m that optimizes overall error rate
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Out of bag error estimate

m Each bootstrap sample omits about 1/3 of the data items
m Hence, each data item is omitted by about 1/3 of the samples

m If data item d does not appear in bootstrap sample D;, d is out of bag (oob)
for D;

m Oob classification — for each d, vote only among those T; where d is oob for
D;
m Use oob samples to validate the model

m Estimate generalization error rate of overall model based on error rate of oob
classification

m Do not require a separate test data set
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m Bootstrap sampling — sequence of random data sets from a single sample

m Bagging — bootstrap aggregation
m Build an ensemble of models from bootstrap samples
m Use majority vote as overall verdict

m Provably reduces variance

m Random forest
m Bagging plus randomization in tree building process

m Choose a small random subset of attributes to evaluate at each level

m Out of bag samples
m Each data item is “out of bag” for about 1/3 of samples
m Validate each model based on out of bag samples

m Don't need a separate test set
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