Lecture 20: Ensemble classifiers — Bagging

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August–December 2020

Limitations of classification models

- Bias : Expressiveness of model limits classification
 - For instance, linear separators
- Variance: Variation in model based on sample of training data
 - Shape of a decision tree varies with distribution of training inputs

Models with high variance are expressive but unstable

- In principle, a decision tree can capture an arbitrarily complex classification criterion
- Actual structure of the tree depends on impurity calculation
- Danger of overfitting: model tied too closely to training set
- Is there an alternative to pruning?

Ensemble models

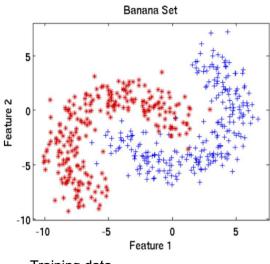
- Sequence of independent training data sets D_1 , D_2 , ..., D_k
- Generate models M_1 , M_2 , ..., M_k
- Take this ensemble of models and "average" them
 - For regression, take the mean of the predictions
 - For classification, take a vote among the results and choose the most popular one
- Challenge: Infeasible to get large number of independent training samples
- Can we build independent models from a single training data set?
 - Strategy to build the model is fixed
 - Same data will produce same model

Bootstrap Aggregating = Bagging

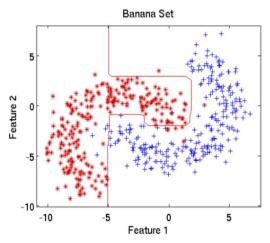
- Training data has *N* items
 - $TD = \{d_1, d_2, \dots, d_N\}$
- Pick a random sample with replacement
 - Pick an item at random (probability $\frac{1}{N}$)
 - Put it back into the set
 - Repeat K times
- Some items in the sample will be repeated
- If sample size is same as data size (K = N), expected number of distinct items is $(1 \frac{1}{e}) \cdot N$
 - Approx 63.2%

Bootstrap Aggregating = Bagging

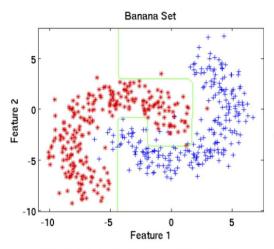
- Sample with replacement of size *N* : bootstrap sample
 - Approx 2/3 of full training data
- Take *k* such samples
- Build a model for each sample
 - Models will vary because each uses different training data
- Final classifier: report the majority answer
 - Assumptions: binary classifier, k odd
- Provably reduces variance



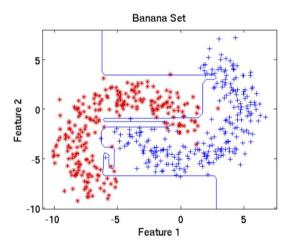
Training data



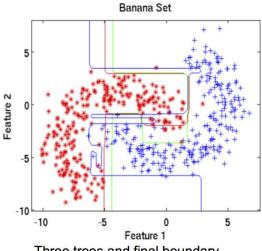
Decision boundary produced by one tree



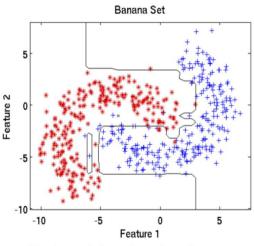
Decision boundary produced by a second tree



Decision boundary produced by a third tree



Three trees and final boundary overlaid



Final result from bagging all trees.

When to use bagging

- Bagging improves performance when there is high variance
 - Independent samples produce sufficiently different models
- A model with low variance will not show improvement
 - k-nearest neighbour classifier
 - $lue{}$ Given an unknown input, find k nearest neighbours and choose majority
 - lacktriangle Across different subsets of training data, variation in k nearest neighbours is relatively small
 - Bootstrap samples will produce similar models

Random Forest

- Applying bagging to decision trees with a further twist
- As before, k bootstrap samples D_1 , D_2 , ..., D_k
- For each D_i , build decision tree T_i as follows
 - Each data item has M attributes
 - Normally, choose maximum impurity gain among M attributes, then best among remaining $M-1, \ldots$
 - Instead, fix a small limit m < M say $m = \log_2 M + 1$
 - At each level, choose a random subset of available attributes of size m
 - Evaluate only these m attributes to choose next query
 - No pruning build each tree to the maximum
- Final classifier: vote on the results returned by T_1, T_2, \ldots, T_k

Random Forest . . .

- Theoretically, overall error rate depends on two factors
 - Correlation between pairs of trees higher correlation results in higher overall error rate
 - Strength (accuracy) of each tree higher strength of individual trees results in lower overall error rate
- $lue{}$ Reducing m, the number of attributes examined at each level, reduces correlation and strength
 - Both changes influence the error rate in opposite directions
- Increasing m increases both correlation and strength
- lacksquare Search for a value of m that optimizes overall error rate

Out of bag error estimate

- Each bootstrap sample omits about 1/3 of the data items
- Hence, each data item is omitted by about 1/3 of the samples
- If data item d does not appear in bootstrap sample D_i , d is out of bag (oob) for D_i
- Oob classification for each d, vote only among those T_i where d is oob for D_i
- Use oob samples to validate the model
 - Estimate generalization error rate of overall model based on error rate of oob classification
 - Do not require a separate test data set

Summary

- Bootstrap sampling sequence of random data sets from a single sample
- Bagging bootstrap aggregation
 - Build an ensemble of models from bootstrap samples
 - Use majority vote as overall verdict
 - Provably reduces variance
- Random forest
 - Bagging plus randomization in tree building process
 - Choose a small random subset of attributes to evaluate at each level
- Out of bag samples
 - **Each** data item is "out of bag" for about 1/3 of samples
 - Validate each model based on out of bag samples
 - Don't need a separate test set