Lecture 2: Market-Basket Analysis

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php
- Applies in more abstract settings
 - Items are concepts, basket is a set of concepts in which a student does badly
 - Students with difficulties in concept A also tend to do misunderstand concept B
 - Items are words, transactions are documents

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - How significant is this pattern overall?

Setting thresholds

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$
- How significant is this pattern overall?
 - Fix a support level σ

• Want
$$\frac{(X \cup Y).count}{M} \ge \sigma$$

Given sets of items *I* and transactions *T*, with confidence χ and support σ, find all valid association rules X → Y

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

• $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

Naïve strategy: maintain a counter for each Z

```
■ For each t_j \in T
For each Z \subseteq t_j
Increment the counter for Z
```

- After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$
- Need to maintain 2^{|/|} counters
 - Infeasible amount of memory
 - Can we do better?

Madhavan Mukund

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

- A singleton subset that is frequent is an item that appears in at least 10⁷ transactions
- Totally, T contains at most 10^{10} items
- At most $10^{10}/10^7 = 1000$ items are frequent!
- How can we exploit this?