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m Set system: (X, H)

m X — instance space o

m H, subsets of X — possible classifiers / hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H

m VC-Dimension of H — size of the largest subset of X
shattered by H

m VC-dimension of axis-parallel rectangles is 4

e

m VC-dimension may be finite or infinite

[ Jw)

m How can we relate VC-dimension to bounds on training Be
error and test error?
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Shatter function

m Shatter function: 7y (n) — maximum number of subsets of any set A of size n
that can be expressed as AN h for some h € H

m Let d = VC-dim(H)

m For n <d, my(n)=2"

m If d is infinite, 73 (n) = 2" for all n
m What if d is finite?

Sauer's Lemma

For any set system (X, #) of VC-dimension at most d, my(n) < Z <n> for all n

‘ ]
i=1

d
n Z <n> = 0(n?), polynomial with respect to VC-dimension
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Shatter functions for combinations of hypothesis

m Let (X, #1) and (X, H2) be two set systems

m Intersection system — (X, H1 N Hy)
m Combine h; € H; and hy € H, using AND

Claim 7,0, (n) < w3, () - T0,(0) J

m For A C X, |A| = n, interested in size of S = {ANh|heHiNHa}
n S={An(mNhy)| h €Hih€Ho}

n S={(Anh)N(ANhy)) | h1 € Hi, hy € Ho}

m (S| <H{(AN M) | b€ Hit| x [{(ANh2) [ ha € Ha}|

Generalizes to boolean combination f(hy, ..., hy), where each h; € H

m a0 (n) < ma(n)k

Madhavan Mukund Lecture 19: Shatter functions DMML Aug-Dec 2020 4/10



VC-dimension and machine learning

m Let (X, H) be a set system with probability distribution D over X
m Given target concept c* and h € H, error region is symmetric difference hAc*
m For a training sample S, want h with Pr(hAc*) > ¢ to have |S N (hAc*)| >0

Set of error regions is H' = {hAc* | h € H}

m Claim: # and A’ have same VC-dimension and shatter function
m If VC-dim(H) = d, there is A C X, |A| = d, shattered by H
m Three cases: ANc* =0, ACc* =0, Anc* #£10

m In all cases, can shatter A with ' as well
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VC-dimension and machine learning

m For a training sample S, want h with Pr(hAc*) > € to have |S N (hAc*)| >0
m Set of error regions is H' = {hAc* | h € H}

m Apply the following result to H’

Key Theorem
Let (X, 7H) be a set system, D a probability distribution over X, and let n be an

e 8 2 1
integer satisfying n > — and n > — |log, 2m3/(2n) + log, HE
€ €

Let S consists of n points drawn from D. With probability > 1 — §, every h € H
with Pr(h) > € intersects S.

m Proof omitted. Strange constants like % arise from use of Chebyshev's
inequality in the proof.
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VC-dimension and machine learning

m This gives us the following analogue of the PAC learning guarantee

Sample bound
For any class H and distribution D, if a training sample S is drawn using D of size
n> % {Iog(27rH(2n)) + log (ﬂ
then with probability > 1 — 9,
m every h € H with true error errp(h) > € has training error errs(h) > 0,

m i.e., every h € H with training error errs(h) = 0. has true error errp(h) < ¢
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VC-dimension and machine learning

m There is a corresponding version of uniform convergence.
Shatter function uniform convergence

For any class H and distribution D, if a training sample S is drawn using D of size

)
then with probability > 1 — ¢, every h € H will have |errs(h) — errp(h)| < e.

s 6% {m(m{(zn)) +in 1}
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VC-dimension and machine learning

m Using Sauer’'s Lemma we can rewrite the sample bound directly using
VC-dimension.

Sample bound using VC-dimension

For any class H and distribution D, if a training sample S is drawn using D of size
1 1 1
0] ( {VC—dim(H) log — + log })
€ € 0
then with probability > 1 — 9,

m every h € H with true error errp(h) > € has training error errs(h) > 0,

m i.e., every h € H with training error errs(h) = 0. has true error errp(h) < ¢

m We can similarly rewrite the uniform convergence criterion
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m VC-dimension gives rise to the shatter function

m For finite VC-dimension, shatter function grows as a polynomial in
VC-dimension (Sauer's Lemma)

m We can prove analogues of PAC learning guarantee and uniform convergence in
terms of shatter function

m Note that these theoretical bounds are hard to use in practice

m Difficult, if not impossible, to compute VC-dimension and shatter function for
complex models
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