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VC-dimension

Set system: (X ,H)

X — instance space

H, subsets of X — possible classifiers / hypotheses

A ⊆ X is shattered by H if every subset of A is given by
A ∩ h for some h ∈ H

VC-Dimension of H — size of the largest subset of X
shattered by H

VC-dimension of axis-parallel rectangles is 4

VC-dimension may be finite or infinite

How can we relate VC-dimension to bounds on training
error and test error?
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Shatter function

Shatter function: πH(n) — maximum number of subsets of any set A of size n
that can be expressed as A ∩ h for some h ∈ H

Let d = VC-dim(H)

For n ≤ d , πH(n) = 2n

If d is infinite, πH(n) = 2n for all n

What if d is finite?

Sauer’s Lemma

For any set system (X ,H) of VC-dimension at most d , πH(n) ≤
d∑

i=1

(
n

i

)
for all n

d∑
i=1

(
n

i

)
= O(nd), polynomial with respect to VC-dimension
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Shatter functions for combinations of hypothesis

Let (X ,H1) and (X ,H2) be two set systems

Intersection system — (X ,H1 ∩H2)

Combine h1 ∈ H1 and h2 ∈ H2 using And

Claim πH1∩H2(n) ≤ πH1(n) · πH2(n)

For A ⊆ X , |A| = n, interested in size of S = {A ∩ h | h ∈ H1 ∩H2}

S = {A ∩ (h1 ∩ h2) | h1 ∈ H1, h2 ∈ H2}

S = {(A ∩ h1) ∩ (A ∩ h2) | h1 ∈ H1, h2 ∈ H2}

|S| ≤ |{(A ∩ h1) | h1 ∈ H1}| × |{(A ∩ h2) | h2 ∈ H2}|

Generalizes to boolean combination f (h1, . . . , hk), where each hi ∈ H
πf (H)(n) ≤ πH(n)k
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VC-dimension and machine learning

Let (X ,H) be a set system with probability distribution D over X

Given target concept c∗ and h ∈ H, error region is symmetric difference h∆c∗

For a training sample S , want h with Pr(h∆c∗) ≥ ε to have |S ∩ (h∆c∗)| > 0

Set of error regions is H′ = {h∆c∗ | h ∈ H}

Claim: H and H′ have same VC-dimension and shatter function

If VC-dim(H) = d , there is A ⊆ X , |A| = d , shattered by H
Three cases: A ∩ c∗ = ∅, A ⊆ c∗ = ∅, A ∩ c∗ 6= ∅
In all cases, can shatter A with H′ as well
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VC-dimension and machine learning

For a training sample S , want h with Pr(h∆c∗) ≥ ε to have |S ∩ (h∆c∗)| > 0

Set of error regions is H′ = {h∆c∗ | h ∈ H}

Apply the following result to H′

Key Theorem

Let (X ,H) be a set system, D a probability distribution over X , and let n be an

integer satisfying n ≥ 8

ε
and n ≥ 2

ε

[
log2 2πH(2n) + log2

1

δ

]
.

Let S consists of n points drawn from D. With probability ≥ 1− δ, every h ∈ H
with Pr(h) > ε intersects S .

Proof omitted. Strange constants like 8
ε arise from use of Chebyshev’s

inequality in the proof.
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VC-dimension and machine learning

This gives us the following analogue of the PAC learning guarantee

Sample bound

For any class H and distribution D, if a training sample S is drawn using D of size

n >
2

ε

[
log(2πH(2n)) + log

1

δ

]
then with probability ≥ 1− δ,

every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0,

i.e., every h ∈ H with training error errS(h) = 0. has true error errD(h) < ε
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VC-dimension and machine learning

There is a corresponding version of uniform convergence.

Shatter function uniform convergence

For any class H and distribution D, if a training sample S is drawn using D of size

n >
8

ε2

[
ln(2πH(2n)) + ln

1

δ

]
then with probability ≥ 1− δ, every h ∈ H will have |errS(h)− errD(h)| ≤ ε.
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VC-dimension and machine learning

Using Sauer’s Lemma we can rewrite the sample bound directly using
VC-dimension.

Sample bound using VC-dimension

For any class H and distribution D, if a training sample S is drawn using D of size

O

(
1

ε

[
VC-dim(H) log

1

ε
+ log

1

δ

])
then with probability ≥ 1− δ,

every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0,

i.e., every h ∈ H with training error errS(h) = 0. has true error errD(h) < ε

We can similarly rewrite the uniform convergence criterion
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Summary

VC-dimension gives rise to the shatter function

For finite VC-dimension, shatter function grows as a polynomial in
VC-dimension (Sauer’s Lemma)

We can prove analogues of PAC learning guarantee and uniform convergence in
terms of shatter function

Note that these theoretical bounds are hard to use in practice

Difficult, if not impossible, to compute VC-dimension and shatter function for
complex models
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