Lecture 19: Shatter functions

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

VC-dimension

- Set system: (X, \mathcal{H})
 - X instance space
 - \mathcal{H} , subsets of X possible classifiers / hypotheses
- $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$
- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
 - VC-dimension of axis-parallel rectangles is 4
 - VC-dimension may be finite or infinite
- How can we relate VC-dimension to bounds on training error and test error?

Shatter function

- Shatter function: π_H(n) maximum number of subsets of any set A of size n that can be expressed as A ∩ h for some h ∈ H
 - Let $d = \text{VC-dim}(\mathcal{H})$
 - For $n \leq d$, $\pi_{\mathcal{H}}(n) = 2^n$
 - If d is infinite, $\pi_{\mathcal{H}}(n) = 2^n$ for all n
 - What if *d* is finite?

Sauer's Lemma

For any set system (X, \mathcal{H}) of VC-dimension at most d, $\pi_{\mathcal{H}}(n) \leq \sum_{i=1}^{d} \binom{n}{i}$ for all n

•
$$\sum_{i=1}^{d} \binom{n}{i} = O(n^d)$$
, polynomial with respect to VC-dimension

Shatter functions for combinations of hypothesis

- Let (X, \mathcal{H}_1) and (X, \mathcal{H}_2) be two set systems
- Intersection system $(X, \mathcal{H}_1 \cap \mathcal{H}_2)$
 - Combine $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ using AND

Claim $\pi_{\mathcal{H}_1 \cap \mathcal{H}_2}(n) \leq \pi_{\mathcal{H}_1}(n) \cdot \pi_{\mathcal{H}_2}(n)$

- For $A \subseteq X$, |A| = n, interested in size of $S = \{A \cap h \mid h \in \mathcal{H}_1 \cap \mathcal{H}_2\}$
- $\blacksquare \ \mathcal{S} = \{A \cap (h_1 \cap h_2) \mid h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2\}$
- $\mathcal{S} = \{ (A \cap h_1) \cap (A \cap h_2) \mid h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2 \}$
- $|S| \le |\{(A \cap h_1) \mid h_1 \in \mathcal{H}_1\}| \times |\{(A \cap h_2) \mid h_2 \in \mathcal{H}_2\}|$

Generalizes to boolean combination $f(h_1, \ldots, h_k)$, where each $h_i \in \mathcal{H}$

• $\pi_{f(\mathcal{H})}(n) \leq \pi_{\mathcal{H}}(n)^k$

- Let (X, \mathcal{H}) be a set system with probability distribution D over X
- Given target concept c^* and $h \in \mathcal{H}$, error region is symmetric difference $h\Delta c^*$
- For a training sample S, want h with $Pr(h\Delta c^*) \ge \epsilon$ to have $|S \cap (h\Delta c^*)| > 0$
- Set of error regions is $\mathcal{H}' = \{h\Delta c^* \mid h \in \mathcal{H}\}$
- **Claim:** \mathcal{H} and \mathcal{H}' have same VC-dimension and shatter function
 - If VC-dim $(\mathcal{H}) = d$, there is $A \subseteq X$, |A| = d, shattered by \mathcal{H}
 - Three cases: $A \cap c^* = \emptyset$, $A \subseteq c^* = \emptyset$, $A \cap c^* \neq \emptyset$
 - In all cases, can shatter A with \mathcal{H}' as well

- For a training sample S, want h with $Pr(h\Delta c^*) \ge \epsilon$ to have $|S \cap (h\Delta c^*)| > 0$
- Set of error regions is $\mathcal{H}' = \{h\Delta c^* \mid h \in \mathcal{H}\}$
- Apply the following result to \mathcal{H}'

Key Theorem Let (X, \mathcal{H}) be a set system, D a probability distribution over X, and let n be an integer satisfying $n \ge \frac{8}{\epsilon}$ and $n \ge \frac{2}{\epsilon} \left[\log_2 2\pi_{\mathcal{H}}(2n) + \log_2 \frac{1}{\delta} \right]$.

Let *S* consists of *n* points drawn from *D*. With probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ with $Pr(h) > \epsilon$ intersects *S*.

Proof omitted. Strange constants like $\frac{8}{\epsilon}$ arise from use of Chebyshev's inequality in the proof.

This gives us the following analogue of the PAC learning guarantee

Sample bound For any class \mathcal{H} and distribution D, if a training sample S is drawn using D of size $n > \frac{2}{\epsilon} \left[\log(2\pi_{\mathcal{H}}(2n)) + \log \frac{1}{\delta} \right]$ then with probability $\geq 1 - \delta$, • every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \geq \epsilon$ has training error $\operatorname{err}_S(h) > 0$, • i.e., every $h \in \mathcal{H}$ with training error $\operatorname{err}_S(h) = 0$. has true error $\operatorname{err}_D(h) < \epsilon$

• There is a corresponding version of uniform convergence.

Shatter function uniform convergence

For any class \mathcal{H} and distribution D, if a training sample S is drawn using D of size

$$n > rac{8}{\epsilon^2} \left[\ln(2\pi_{\mathcal{H}}(2n)) + \ln rac{1}{\delta}
ight]$$

then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ will have $|\operatorname{err}_{\mathcal{S}}(h) - \operatorname{err}_{\mathcal{D}}(h)| \leq \epsilon$.

 Using Sauer's Lemma we can rewrite the sample bound directly using VC-dimension.

Sample bound using VC-dimension

For any class \mathcal{H} and distribution D, if a training sample S is drawn using D of size

$$O\left(rac{1}{\epsilon}\left[\mathsf{VC} ext{-dim}(\mathcal{H})\lograc{1}{\epsilon}+\lograc{1}{\delta}
ight]
ight)$$

then with probability $\geq 1 - \delta$,

- every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \ge \epsilon$ has training error $\operatorname{err}_S(h) > 0$,
- i.e., every $h \in \mathcal{H}$ with training error $\operatorname{err}_{\mathcal{S}}(h) = 0$. has true error $\operatorname{err}_{\mathcal{D}}(h) < \epsilon$

• We can similarly rewrite the uniform convergence criterion

- VC-dimension gives rise to the shatter function
- For finite VC-dimension, shatter function grows as a polynomial in VC-dimension (Sauer's Lemma)
- We can prove analogues of PAC learning guarantee and uniform convergence in terms of shatter function
- Note that these theoretical bounds are hard to use in practice
- Difficult, if not impossible, to compute VC-dimension and shatter function for complex models