Lecture 18: VC Dimension

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

Representational capacity

PAC learning guarantee

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \geq \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_{D} > \epsilon$ has training error $\operatorname{err}_{S} > 0$.

Uniform convergence

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$. If a training set S of size $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$ is drawn using D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

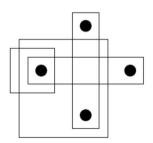
\blacksquare $|\mathcal{H}|$ is representational capacity, when \mathcal{H} is finite

• How do we adapt and apply these bounds when $\mathcal H$ is infinite?

Madhavan Mukund

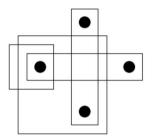
Shattering

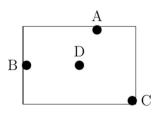
- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$
 - Every way of splitting A is captured by a hypothesis in H
 - $2^{|A|}$ different subsets of A
- Example:
 - $X = \mathbb{R} \times \mathbb{R}$
 - \mathcal{H} : Axis-parallel rectangles
 - A : Four points forming a diamond
 - H shatters A



VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
 - For axis-parallel rectangles, VC-dimension is at least 4
 - Not a universal requirement some sets of size 4 may not be shattered
- No set of size 5 can be shattered by axis-parallel rectangles
 - Draw a bounding box rectangle each edge touches a boundary point
 - At least one point lies inside the bounding box
 - Any set that includes the boundary points also includes the interior point





VC-Dimension, Examples

- Intervals of reals have VC-dimension 2
 - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
 - Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
 - $X = \mathbb{R}$, $\mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
 - Cannot shatter 5 points: consider subset with first, third and fifth point
- Finite sets of real numbers
 - $X = \mathbb{R}, \ \mathcal{H} = \{Z \mid Z \subseteq \mathbb{R}, |Z| < \infty\}$
 - Can shatter any finite set of reals VC-dimension is infinite
- Convex polygons, $X = \mathbb{R} \times \mathbb{R}$
 - For any *n*, place *n* points on unit circle
 - Each subset of these points is a convex polygon VC-dimension is infinite

VC-Dimension, Examples

Half spaces in d dimensions

• $X = \mathbb{R}^d$, classifiers are linear separators, $\{x \mid w^T x \leq t\}$

- Can shatter d+1 points consisting of origin and d unit vectors
- For a subset D, set $w_i = -1$ if unit vector i in D, $w_i = 1$ if i not in D
- $w^T x \leq -1$ characterizes *D*, if origin not in *D*

• If C contains the origin, use $w^T x \leq 0$

Theorem (Radon)

Any set $S \subseteq \mathbb{R}^d$ with $|S| \ge d + 2$, can be partitioned into two disjoint subsets A and B such that convex-hull(A) \cap convex-hull(B) $\neq \emptyset$.

• Hence no set of size d+2 is shattered by half-spaces in \mathbb{R}^d

Madhavan Mukund

VC-Dimension, Examples

Spheres in d dimensions

• $X = \mathbb{R}^d$, sphere with centre x_0 and radius r, $\{x \mid |x - x_0| \le r\}$

• Cannot shatter any set S with d+2 points

- Suppose we could. Consider A, B given by Radon's theorem
- Spheres C_A and C_B such that $C_A \cap S = A$, $C_B \cap S = B$
- C_A and C_B may intersect, but intersection is disjoint from S
- Separating halfplane perpendicular to line joining centres contradiction
- Consider d+1 points consisting of d unit vectors plus the origin
 - Let D be a subset of these d+1 points, with |D| = k
 - Centre x_0 is sum of vectors in D

For
$$\begin{cases} v \in D, & |v - x_0| = \sqrt{k - 1}, \\ v \notin D, & |v - x_0| = \sqrt{k + 1}, \\ \text{origin}, & |0 - x_0| = \sqrt{k} \end{cases}$$
 — choose radius *r* appropriately

Madhavan Mukund

- PAC learning and uniform convergence use size of finite hypothesis set as measure of representational capacity
- VC-dimension provides a way of measuring capacity for infinite hypothesis sets
- VC-dimension may be finite or infinite
- We will see how to apply VC-dimension to generalize theorems relating sample size, true error and training error