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Supervised learning

m Set of possible input instances X
m Categories C, say {0,1}

m Build a classification model M : X — C

Restrict the types of models

m Hypothesis space # — e.g., linear separators
m Search for best M € H

How do we find the best M?
m Labelled training data
m Choose M to minimize error (loss) with respect to this set

m Why should M generalize well to arbitrary data?
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No free lunch

m ML algorithms minimize training loss

m Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

m Is the situation hopeless?
m NFL theorem refers to prediction inputs coming from all possible distributions

m ML assumes training set is “representative” of overall data

m Prediction instances follow roughly the same distribution as training set
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A theoretical framework for ML

m X is the space of input instances

m C C X is the target concept to be learned

m e.g., X is all emails, C is the set of spam emails

m X is equipped with a probability distribution D
m Any random sample from X is drawn using D
m In particular, training set and test set are such random
samples
m 7 is a set of hypotheses
m Each h € 7 identifies a subset of X
m Choose the best h € H as model
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Training error and true error

m True error: Probability that h incorrectly classifies x € X
drawn randomly according to D

m hAC = (h\ C)U(C\ h)
m Symmetric difference, error region

m errp(h) = Prv.p(hAC)

m Training error: Given a training sample S C X
m errs(h) = SN (hAC)|/|S|

m Can make errg(h) arbitrarily small
m Store and look up training data in a table — zero error

m Poor generalization — overfitting

m Goal: minimizing errs(h) should also minimize errp(h)
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Generalization guarantees

m Overfitting Low training error but high true error
m Underfitting Cannot achieve low training/true error

m Related to the representational capacity of H
m How expressive is 7 How many different concepts can it capture?
m Capacity too high — overfitting

m Capacity too low — underfitting

m For now, assume that H is finite
m Example: classify population based on age and income
m Age and income are discrete values with lower and upper bounds
m Assume classifier is of the form (a; < age < ay) A (i1 < income < i)
m Rectangle with corners (a1, i), (a2, i2)

m Only finite number of possibilities
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Probably Approximately Correct (PAC) learning

m With high probability, the hypothesis h that fits the sample S also fits the
concept approximately correctly

Theorem (PAC learning guarantee)

Let 7 be a hypothesis class, §,¢ > 0 and S a training set of size
1

n> —(In|H|+In(1/d)) drawn using D. With probability > 1 — ¢,
€

m Every h € H with true error errp > ¢ has training error errs > 0.
m Equivalently, every h € H with training error errs = 0 then true error errp < e.
m J: probability of choosing a bad training set

m ¢; how much error we can tolerate

|H|: model capacity
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Probably Approximately Correct (PAC) learning

Theorem (PAC learning guarantee)

Let 7/ be a hypothesis class, ,¢ > 0 and S a training set of size
1

n> =(In|H|+ In(1/0)) drawn using D. With probability > 1 — 4,
€

m Every h € H with true error errp > ¢ has training error errs > 0.

m Equivalently, every h € H with training error errs = 0 then true error errp < e.

Proof
m Let hi, hy,...,€ H have errp > € but errs = 0 — don’t want output these

m Event A;: h; has errs = 0 on random sample S
m Every h; has errp > ¢ = probability that random input is correct is < (1 — ¢)
m S| =n,s0 Pr(A;) <(1—¢)"
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Probably Approximately Correct (PAC) learning

Proof
m Let hy, ho, ..., € H have errp > € but errs = 0 — don't want output these

m Event A;: h; has errs = 0 on random sample S

m Every h; has errp > ¢ = probability that random input is correct is < (1 — ¢€)
m S| =n,s0Pr(A;) <(1—¢)

Probability that some h; has errs = 0: Pr(|J; Ai) < |H|(1 — ¢€)” (Union Bound)
m Since 1 — e < e~ (Taylor expansion of e¥), Pr(|J; Ai) < [H|e "

m We assumed n > 2(In [#[ + In(1/0)), so Pr(|J; A;) < [H|e~ " [HI=In(1/9)

m [H]e NIHI=In(1/8) — |34|e=InlHlg=In(1/8) — |34 . (1/|H]) -6 = &

m Hence, probability that some h € H has errp > € and errs =0is < ¢

m Hence, with probability > 1 — §, every h € H satisfies PAC learning guarantee
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Uniform convergence

m PAC learning guarantee If h has errs = 0 then h has errp < ¢
m What if there is no h with errs =0
m Would like a statement like the following:

Uniform convergence

For a sufficiently large training set S, every hypothesis h € H with high probability
has training error within ¢ of true error.

m Intuition: consider actual concept C and hypothesis h as binary strings
m Suppose C and h differ in 10% of positions (true error)

m If we take a sufficiently large subset of positions, within that subset we expect
close to 10% discrepancy (training error)
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Hoeffding bound

m Flip a coin n times, with
Pr(heads) = p

m Expect to see p - n heads
m Let s be the actual number of heads

m What is the probability that s is far
away from p - n?

Hoeffding bound 7 /
CP— On pm (P‘i--t']m

m Pr(s/n>p+a)<e 2

m Pr(s/n<p—a)<e 2
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Uniform convergence

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +In(2/6)) is drawn using D, then with probability > 1 — 4, every
h € H satisfies |errs(h) — errp(h)| < e.

Proof
mFixheH, S= {d]_,dQ,...7dn}.
m Boolean variables {x1,x,...,x,}: x; = 1 iff h makes a mistake on dj.
Zj:l X

m Actual training error errs(h) is

m Expected value of training error is n - errp(h).
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Uniform convergence

mFix heH, S={d.do,...,dp}, x; = 1iff h makes a mistake on d;.

Zf:l X

Actual training error errs(h) is , expected value is n - errp(h).

Let Aj, be the event that h is a bad hypothesis: |errs(h) — errp(h)| > €

By Hoeffding bounds:
m Pr(errs(h) > errp(h) +¢) < e~
m Prierrs(h) < errp(h) —€) < e
m Pr(An) = Pr(lerrs(h) — errp(h)] > €) < 2e="n<’

Probability that some h is bad: Pr(lJ, An) < [H]- 2e"" (Union Bound)

1
m Substitute n > ﬁ(ln |H| + In(2/6)) to get Pr(U, An) < 0.
€
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Models with bounded description length

m Assume model is described using at most b bits
m|H| <2P s0In|H| < bin2

m Applying PAC learning guarantee:

m With probability at least 1 — d, any model with errs(h) = 0 will have
In2+In(1
errp(h) < bn—&—Sn(/ﬁ)

m Decision trees: k nodes, d columns/features

m log d bits to write down question for each node

m klog d bits for the whole tree
1

m If n > —(In(2°"°89) 1 In(1/6)), PAC learning guarantee holds
€

m Solve for k, k < (ne —1In(1/0))/log d

m If we find a small tree of size k with zero training error, it will generalize well
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m How do we justify that a model optimized for training data generalizes well?
m PAC learning guarantee — training set size determined by parameters ¢, ¢, |H|

m Extend to uniform convergence

Apply to get bounds for models with bounded description length

m How do we compute representational capacity if H is infinite?
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