Lecture 17: PAC Learning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

Supervised learning

- Set of possible input instances X
- Categories C, say $\{0, 1\}$
- Build a classification model $M: X \rightarrow C$
- Restrict the types of models
 - Hypothesis space \mathcal{H} e.g., linear separators
 - Search for best $M \in \mathcal{H}$
- How do we find the best *M*?
 - Labelled training data
 - Choose *M* to minimize error (loss) with respect to this set
 - Why should M generalize well to arbitrary data?

No free lunch

- ML algorithms minimize training loss
- Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the same error rate when classifying previously unobserved points.

- Is the situation hopeless?
- NFL theorem refers to prediction inputs coming from all possible distributions
- ML assumes training set is "representative" of overall data
 - Prediction instances follow roughly the same distribution as training set

A theoretical framework for ML

- X is the space of input instances
- $C \subseteq X$ is the target concept to be learned
 - e.g., X is all emails, C is the set of spam emails
- X is equipped with a probability distribution D
 - Any random sample from X is drawn using D
 - In particular, training set and test set are such random samples
- \mathcal{H} is a set of hypotheses
 - Each $h \in \mathcal{H}$ identifies a subset of X
 - Choose the best $h \in \mathcal{H}$ as model

Training error and true error

- True error: Probability that *h* incorrectly classifies *x* ∈ *X* drawn randomly according to *D*
 - $\bullet h\Delta C = (h \setminus C) \cup (C \setminus h)$
 - Symmetric difference, error region
 - $\operatorname{err}_D(h) = \operatorname{Pr}_{x \sim D}(h \Delta C)$
- **Training error**: Given a training sample $S \subseteq X$
 - $\operatorname{err}_{S}(h) = |S \cap (h \Delta C)| / |S|$
- Can make err₅(h) arbitrarily small
 - Store and look up training data in a table zero error
 - Poor generalization overfitting

Goal: minimizing $\operatorname{err}_{S}(h)$ should also minimize $\operatorname{err}_{D}(h)$

Generalization guarantees

- Overfitting Low training error but high true error
- Underfitting Cannot achieve low training/true error
- Related to the representational capacity of \mathcal{H}
 - How expressive is *H*? How many different concepts can it capture?
 - Capacity too high overfitting
 - Capacity too low underfitting
- For now, assume that \mathcal{H} is finite
 - Example: classify population based on age and income
 - Age and income are discrete values with lower and upper bounds
 - Assume classifier is of the form $(a_1 \leq age \leq a_2) \land (i_1 \leq income \leq i_2)$
 - Rectangle with corners (a_1, i_1) , (a_2, i_2)
 - Only finite number of possibilities

Probably Approximately Correct (PAC) learning

With high probability, the hypothesis h that fits the sample S also fits the concept approximately correctly

Theorem (PAC learning guarantee)

- Let ${\mathcal H}$ be a hypothesis class, $\delta,\epsilon>0$ and S a training set of size
- $n \geq \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using *D*. With probability $\geq 1 \delta$,
 - Every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.
 - Equivalently, every $h \in \mathcal{H}$ with training error $\operatorname{err}_S = 0$ then true error $\operatorname{err}_D < \epsilon$.
 - δ : probability of choosing a bad training set
 - ϵ : how much error we can tolerate
 - $|\mathcal{H}|$: model capacity

Probably Approximately Correct (PAC) learning

Theorem (PAC learning guarantee)

- Let $\mathcal H$ be a hypothesis class, $\delta,\epsilon>0$ and S a training set of size
- $n \geq \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\geq 1 \delta$,
 - Every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.
 - Equivalently, every $h \in \mathcal{H}$ with training error $\operatorname{err}_S = 0$ then true error $\operatorname{err}_D < \epsilon$.

Proof

- Let $h_1, h_2, \ldots, \in \mathcal{H}$ have $\operatorname{err}_D \geq \epsilon$ but $\operatorname{err}_S = 0$ don't want output these
- Event A_i : h_i has $err_S = 0$ on random sample S
 - Every h_i has $\operatorname{err}_D \geq \epsilon \Rightarrow$ probability that random input is correct is $\leq (1 \epsilon)$
 - |S| = n, so $Pr(A_i) \leq (1 \epsilon)^n$

Probably Approximately Correct (PAC) learning

Proof

- Let $h_1, h_2, \ldots, \in \mathcal{H}$ have $\operatorname{err}_D \geq \epsilon$ but $\operatorname{err}_S = 0$ don't want output these
- Event A_i : h_i has $err_S = 0$ on random sample S
 - Every h_i has err_D ≥ ε ⇒ probability that random input is correct is ≤ (1 − ε)
 |S| = n, so Pr(A_i) ≤ (1 − ε)ⁿ
- Probability that some h_i has $\operatorname{err}_S = 0$: $Pr(\bigcup_i A_i) \leq |\mathcal{H}|(1-\epsilon)^n$ (Union Bound)
- Since $1 \epsilon \leq e^{-\epsilon}$ (Taylor expansion of e^{x}), $Pr(\bigcup_{i} A_{i}) \leq |\mathcal{H}|e^{-\epsilon n}$
- We assumed $n \geq \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$, so $Pr(\bigcup_i A_i) \leq |\mathcal{H}|e^{-\ln |\mathcal{H}| \ln(1/\delta)}$
- $|\mathcal{H}|e^{-\ln|\mathcal{H}|-\ln(1/\delta)} = |\mathcal{H}|e^{-\ln|\mathcal{H}|}e^{-\ln(1/\delta)} = |\mathcal{H}| \cdot (1/|\mathcal{H}|) \cdot \delta = \delta$
- Hence, probability that some $h \in \mathcal{H}$ has $err_D > \epsilon$ and $err_S = 0$ is $< \delta$

• Hence, with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies PAC learning guarantee

Uniform convergence

- PAC learning guarantee If h has $err_S = 0$ then h has $err_D \le \epsilon$
- What if there is no h with $err_S = 0$
- Would like a statement like the following:

Uniform convergence

For a sufficiently large training set S, every hypothesis $h \in \mathcal{H}$ with high probability has training error within $\pm \epsilon$ of true error.

- Intuition: consider actual concept C and hypothesis h as binary strings
- Suppose *C* and *h* differ in 10% of positions (true error)
- If we take a sufficiently large subset of positions, within that subset we expect close to 10% discrepancy (training error)

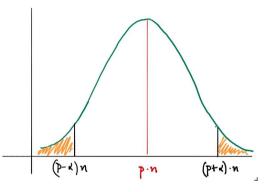
Hoeffding bound

- Flip a coin n times, with Pr(heads) = p
- Expect to see $p \cdot n$ heads
- Let *s* be the actual number of heads
- What is the probability that s is far away from p · n?

Hoeffding bound

• $Pr(s/n > p + \alpha) \le e^{-2n\alpha^2}$

•
$$\Pr(s/n$$



Uniform convergence

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$. If a training set S of size $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$ is drawn using D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

Proof

- Fix $h \in \mathcal{H}$, $S = \{d_1, d_2, \ldots, d_n\}$.
- Boolean variables $\{x_1, x_2, \ldots, x_n\}$: $x_j = 1$ iff h makes a mistake on d_j .
- Actual training error $\operatorname{err}_{S}(h)$ is $\frac{\sum_{j=1}^{n} x_{j}}{n}$.
- Expected value of training error is $n \cdot \operatorname{err}_D(h)$.

Uniform convergence

• Fix $h \in \mathcal{H}$, $S = \{d_1, d_2, \dots, d_n\}$, $x_j = 1$ iff h makes a mistake on d_j .

• Actual training error
$$\operatorname{err}_{S}(h)$$
 is $\frac{\sum_{j=1}^{n} x_{j}}{n}$, expected value is $n \cdot \operatorname{err}_{D}(h)$.

- Let A_h be the event that h is a bad hypothesis: $|\operatorname{err}_{S}(h) \operatorname{err}_{D}(h)| > \epsilon$
- By Hoeffding bounds:
 - $Pr(\operatorname{err}_{\mathcal{S}}(h) > \operatorname{err}_{D}(h) + \epsilon) < e^{-n\epsilon^{2}}$
 - $Pr(\operatorname{err}_{\mathcal{S}}(h) < \operatorname{err}_{D}(h) \epsilon) < e^{-n\epsilon^{2}}$
 - $Pr(A_h) = Pr(|\operatorname{err}_{\mathcal{S}}(h) \operatorname{err}_{\mathcal{D}}(h)| > \epsilon) < 2e^{-n\epsilon^2}$
- Probability that some h is bad: $Pr(\bigcup_h A_h) \leq |\mathcal{H}| \cdot 2e^{-n\epsilon^2}$ (Union Bound)

• Substitute
$$n \ge \frac{1}{2\epsilon^2} (\ln |\mathcal{H}| + \ln(2/\delta))$$
 to get $Pr(\bigcup_h A_h) \le \delta$.

Models with bounded description length

- Assume model is described using at most b bits
- $|\mathcal{H}| \leq 2^b$, so $\ln |\mathcal{H}| \leq b \ln 2$
- Applying PAC learning guarantee:

• With probability at least $1 - \delta$, any model with $\operatorname{err}_{S}(h) = 0$ will have $\operatorname{err}_{D}(h) < \frac{b \ln 2 + \ln(1/\delta)}{|S|}$

- Decision trees: k nodes, d columns/features
 - $\log d$ bits to write down question for each node
 - $k \log d$ bits for the whole tree
 - If $n \ge \frac{1}{\epsilon} (\ln(2^{k \log d}) + \ln(1/\delta))$, PAC learning guarantee holds
 - Solve for k, $k \leq (n\epsilon \ln(1/\delta)) / \log d$
 - If we find a small tree of size k with zero training error, it will generalize well

- How do we justify that a model optimized for training data generalizes well?
- PAC learning guarantee training set size determined by parameters δ , ϵ , $|\mathcal{H}|$
- Extend to uniform convergence
- Apply to get bounds for models with bounded description length
- How do we compute representational capacity if \mathcal{H} is infinite?