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Supervised learning

Set of possible input instances X

Categories C , say {0, 1}

Build a classification model M : X → C

Restrict the types of models

Hypothesis space H — e.g., linear separators

Search for best M ∈ H

How do we find the best M?

Labelled training data

Choose M to minimize error (loss) with respect to this set

Why should M generalize well to arbitrary data?
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No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set
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A theoretical framework for ML

X is the space of input instances

C ⊆ X is the target concept to be learned

e.g., X is all emails, C is the set of spam emails

X is equipped with a probability distribution D

Any random sample from X is drawn using D

In particular, training set and test set are such random
samples

H is a set of hypotheses

Each h ∈ H identifies a subset of X

Choose the best h ∈ H as model
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Training error and true error

True error: Probability that h incorrectly classifies x ∈ X
drawn randomly according to D

h∆C = (h \ C ) ∪ (C \ h)

Symmetric difference, error region

errD(h) = Prx∼D(h∆C )

Training error: Given a training sample S ⊆ X

errS(h) = |S ∩ (h∆C )|/|S |

Can make errS(h) arbitrarily small

Store and look up training data in a table — zero error

Poor generalization — overfitting

Goal: minimizing errS(h) should also minimize errD(h)
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Generalization guarantees

Overfitting Low training error but high true error

Underfitting Cannot achieve low training/true error

Related to the representational capacity of H
How expressive is H? How many different concepts can it capture?

Capacity too high — overfitting

Capacity too low — underfitting

For now, assume that H is finite

Example: classify population based on age and income

Age and income are discrete values with lower and upper bounds

Assume classifier is of the form (a1 ≤ age ≤ a2) ∧ (i1 ≤ income ≤ i2)

Rectangle with corners (a1, i1), (a2, i2)

Only finite number of possibilities
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Probably Approximately Correct (PAC) learning

With high probability, the hypothesis h that fits the sample S also fits the
concept approximately correctly

Theorem (PAC learning guarantee)

Let H be a hypothesis class, δ, ε > 0 and S a training set of size

n ≥ 1

ε
(ln |H|+ ln(1/δ)) drawn using D. With probability ≥ 1− δ,

Every h ∈ H with true error errD > ε has training error errS > 0.

Equivalently, every h ∈ H with training error errS = 0 then true error errD < ε.

δ: probability of choosing a bad training set

ε: how much error we can tolerate

|H|: model capacity
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Probably Approximately Correct (PAC) learning

Theorem (PAC learning guarantee)

Let H be a hypothesis class, δ, ε > 0 and S a training set of size

n ≥ 1

ε
(ln |H|+ ln(1/δ)) drawn using D. With probability ≥ 1− δ,

Every h ∈ H with true error errD > ε has training error errS > 0.

Equivalently, every h ∈ H with training error errS = 0 then true error errD < ε.

Proof

Let h1, h2, . . . ,∈ H have errD ≥ ε but errS = 0 — don’t want output these

Event Ai : hi has errS = 0 on random sample S

Every hi has errD ≥ ε ⇒ probability that random input is correct is ≤ (1− ε)
|S | = n, so Pr(Ai ) ≤ (1− ε)n
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Probably Approximately Correct (PAC) learning

Proof

Let h1, h2, . . . ,∈ H have errD ≥ ε but errS = 0 — don’t want output these

Event Ai : hi has errS = 0 on random sample S

Every hi has errD ≥ ε ⇒ probability that random input is correct is ≤ (1− ε)
|S | = n, so Pr(Ai ) ≤ (1− ε)n

Probability that some hi has errS = 0: Pr(
⋃

i Ai ) ≤ |H|(1− ε)n (Union Bound)

Since 1− ε ≤ e−ε (Taylor expansion of ex), Pr(
⋃

i Ai ) ≤ |H|e−εn

We assumed n ≥ 1
ε (ln |H|+ ln(1/δ)), so Pr(

⋃
i Ai ) ≤ |H|e− ln |H|−ln(1/δ)

|H|e− ln |H|−ln(1/δ) = |H|e− ln |H|e− ln(1/δ) = |H| · (1/|H|) · δ = δ

Hence, probability that some h ∈ H has errD > ε and errS = 0 is < δ

Hence, with probability ≥ 1− δ, every h ∈ H satisfies PAC learning guarantee
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Uniform convergence

PAC learning guarantee If h has errS = 0 then h has errD ≤ ε

What if there is no h with errS = 0

Would like a statement like the following:

Uniform convergence

For a sufficiently large training set S , every hypothesis h ∈ H with high probability
has training error within ±ε of true error.

Intuition: consider actual concept C and hypothesis h as binary strings

Suppose C and h differ in 10% of positions (true error)

If we take a sufficiently large subset of positions, within that subset we expect
close to 10% discrepancy (training error)
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Hoeffding bound

Flip a coin n times, with
Pr(heads) = p

Expect to see p · n heads

Let s be the actual number of heads

What is the probability that s is far
away from p · n?

Hoeffding bound

Pr(s/n > p + α) ≤ e−2nα2

Pr(s/n < p − α) ≤ e−2nα2

Madhavan Mukund Lecture 17: PAC Learning DMML Aug–Dec 2020 11 / 15



Uniform convergence

Uniform convergence

Let H be a hypothesis class, δ, ε > 0. If a training set S of size

n ≥ 1

2ε2
(ln |H|+ ln(2/δ)) is drawn using D, then with probability ≥ 1− δ, every

h ∈ H satisfies |errS(h)− errD(h)| ≤ ε.

Proof

Fix h ∈ H, S = {d1, d2, . . . , dn}.

Boolean variables {x1, x2, . . . , xn}: xj = 1 iff h makes a mistake on dj .

Actual training error errS(h) is

∑n
j=1 xj

n
.

Expected value of training error is n · errD(h).
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Uniform convergence

Fix h ∈ H, S = {d1, d2, . . . , dn}, xj = 1 iff h makes a mistake on dj .

Actual training error errS(h) is

∑n
j=1 xj

n
, expected value is n · errD(h).

Let Ah be the event that h is a bad hypothesis: |errS(h)− errD(h)| > ε

By Hoeffding bounds:

Pr(errS(h) > errD(h) + ε) < e−nε2

Pr(errS(h) < errD(h)− ε) < e−nε2

Pr(Ah) = Pr(|errS(h)− errD(h)| > ε) < 2e−nε2

Probability that some h is bad: Pr(
⋃

h Ah) ≤ |H| · 2e−nε2 (Union Bound)

Substitute n ≥ 1

2ε2
(ln |H|+ ln(2/δ)) to get Pr(

⋃
h Ah) ≤ δ.
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Models with bounded description length

Assume model is described using at most b bits

|H| ≤ 2b, so ln |H| ≤ b ln 2

Applying PAC learning guarantee:

With probability at least 1− δ, any model with errS(h) = 0 will have

errD(h) <
b ln 2 + ln(1/δ)

|S |

Decision trees: k nodes, d columns/features

log d bits to write down question for each node

k log d bits for the whole tree

If n ≥ 1

ε
(ln(2k log d) + ln(1/δ)), PAC learning guarantee holds

Solve for k , k ≤ (nε− ln(1/δ))/ log d

If we find a small tree of size k with zero training error, it will generalize well
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Summary

How do we justify that a model optimized for training data generalizes well?

PAC learning guarantee — training set size determined by parameters δ, ε, |H|

Extend to uniform convergence

Apply to get bounds for models with bounded description length

How do we compute representational capacity if H is infinite?

Madhavan Mukund Lecture 17: PAC Learning DMML Aug–Dec 2020 15 / 15


