Lecture 16: Naïve Bayes Text Classification

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

Text classification

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model
- How do we represent documents?

Set of words model

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

•
$$Pr(d \mid c) = \prod_{w_i \in D} Pr(w_i \mid c) \prod_{w_i \notin D} (1 - Pr(w_i \mid c))$$

$$Pr(d) = \sum_{c \in C} Pr(d \mid c)$$

Madhavan Mukund

Naïve Bayes classifier

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

- $Pr(c_j)$ is fraction of *D* labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_c Pr(c \mid d)$
- By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$

• As usual, discard the common denominator and compute $\arg \max_{c} Pr(d \mid c)Pr(c)$

• Recall
$$Pr(d \mid c) = \prod_{w_i \in D} Pr(w_i \mid c) \prod_{w_i \notin D} (1 - Pr(w_i \mid c))$$

Bag of words model

- Each document is a multiset or bag of words over a vocabulary
 V = {w₁, w₂,..., w_m}
 - Count multiplicities of each word
- As before
 - Each topic c has probability Pr(c)
 - Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$ with respect to each $c_j \in C$
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$
 - Assume document length is independent of the class

Bag of words model

- Generating a random document *d*
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an *m*-sided die that displays *w* with probability $Pr(w \mid c)$
 - Repeat ℓ times
- Let n_j be the number of occurrences of w_j in d

•
$$Pr(d \mid c) = Pr(\ell) \ \ell! \ \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$

Parameter estimation

• Training set $D = \{d_1, d_2, \dots, d_n\}$

• Each d_i is a multiset over V of size ℓ_i

• As before, $Pr(c_j)$ is fraction of D labelled c_j

• $Pr(w_i | c_j)$ — fraction of occurrences of w_i over documents $D_j \subseteq D$ labelled c_j

n_{id} — occurrences of w_i in d

•
$$Pr(w_i \mid c_j) = \frac{\displaystyle\sum_{d \in D_j} n_{id}}{\displaystyle\sum_{t=1}^{m} \sum_{d \in D_j} n_{td}} = \frac{\displaystyle\sum_{d \in D} n_{id} \ Pr(c_j \mid d)}{\displaystyle\sum_{t=1}^{m} \sum_{d \in D} n_{td} \ Pr(c_j \mid d)},$$

since $Pr(c_j \mid d) = \begin{cases} 1 & \text{if } d \in D_j, \\ 0 & \text{otherwise} \end{cases}$

Classification

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

• Recall,
$$Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

Discard $Pr(\ell), \ell!$ since they do not depend on c

• Compute
$$\underset{c}{\operatorname{arg\,max}} Pr(c) \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$

Summary

- We can use naïve Bayes classifiers to assign topics to documents
- Need to define a suitable probabilistic model for generating random documents
- Set of words each document d is a subset of the vocabulary V
- Bag of words each document *d* is a multiset of the vocabulary *V*
- In the bag of words model, we assume that document length is independent of topic