Lecture 15: Naïve Bayes Classifiers

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning August-December 2020

- As before
 - Attributes $\{A_1, A_2, \ldots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class *c_i* defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k | C = c_i)$
- Given a data item $d = (a_1, a_2, \ldots, a_k)$, identify the best class c for d
- Maximize $Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$

• To use probabilities, need to describe how data is randomly generated

Generative model

- Typically, assume a random instance is created as follows
 - Choose a class c_j with probability $Pr(c_j)$
 - Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

• Generative model has associated parameters $\theta = (\theta_1, \dots, \theta_m)$

- Each class probability $Pr(c_j)$ is a parameter
- Each conditional probability $Pr(a_1, \ldots, a_k \mid c_j)$ is a parameter
- We need to estimate these parameters

Maximum Likelihood Estimators

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(\text{heads})$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?
- Likelihood
 - Actual coin toss sequence is $\tau = t_1 t_2 \dots t_N$
 - Given an estimate of θ , compute $Pr(\tau \mid \theta)$ likelihood $L(\theta)$
- $\hat{\theta} = H/N$ maximizes this likelihood $\arg \max_{\theta} L(\theta) = \hat{\theta} = H/N$
 - Maximum Likelihood Estimator (MLE)

Bayesian classification

• Maximize $Pr(C = c_i | A_1 = a_1, \ldots, A_k = a_k)$

By Bayes' rule,

$$Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$$

= $\frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, \dots, A_k = a_k)}$
= $\frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{\sum_{j=1}^{\ell} Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_j) \cdot Pr(C = c_j)}$

Denominator is the same for all c_i , so sufficient to maximize

$$Pr(A_1 = a_1, \ldots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

Example

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

- Pr(C = f) = 5/10 = 1/2
- Pr(A = g, B = q | C = f) = 1/5
- $Pr(A = g, B = q | C = f) \cdot Pr(C = f) = 1/10$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

• Hence, predict C = t

Example ...

- What if we want to classify A = m, B = q?
- $Pr(A = m, B = q \mid C = t) = 0$
- Also Pr(A = m, B = q | C = f) = 0!
- To estimate joint probabilities across all combinations of attributes, we need a much larger set of training data

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

Naïve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) = \prod_{j=1}^k Pr(A_j = a_j | C = c_i)$$

• $Pr(C = c_i)$ is fraction of training data with class c_i

• $Pr(A_j = a_j | C = c_i)$ is fraction of training data labelled c_i for which $A_j = a_j$

Final classification is

$$\underset{c_i}{\operatorname{arg\,max}} Pr(C = c_i) \prod_{j=1}^k Pr(A_j = a_j \mid C = c_i)$$

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering
- However, naive Bayes classifiers work well in practice, even for text classification!
 - Many spam filters are built using this model

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5
- $Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$
- $Pr(A = m | C = f) \cdot Pr(B = q | C = f) \cdot Pr(C = f) = 1/25$
- Hence predict C = t

N	lad	havan	Mu	kund

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

• Suppose A = a never occurs in the test set with C = c

• Setting
$$Pr(A = a | C = c) = 0$$
 wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i | C = c)$

in which this term appears

- Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$
- "Pad" training data with one sample for each value $a_i m_i$ extra data items

• Adjust
$$Pr(A_i = a_i | C = c_j)$$
 to $\frac{n_{ij} + 1}{n_j + m_i}$ where

•
$$n_{ij}$$
 is number of samples with $A_i = a_i$, $C = c_j$

• n_j is number of samples with $C = c_j$

Smoothing

Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

More generally, Lidstone's law of succession, or smoothing

$$Pr(A_i = a_i \mid C = c_j) = rac{n_{ij} + \lambda}{n_j + \lambda m_i}$$

• $\lambda = 1$ is Laplace's law of succession

- Use Bayes' Theorem to build a probabilistic classifier
- Need to define a generative model, for which frequencies are maximum likelihood estimators
- Naïve Bayes classifiers: simplifying assumption of conditional independence
 - No theoretical justification
 - Works well in practice
- Overcome zero counts using smoothing