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Bayesian classifiers

As before

Attributes {A1,A2, . . . ,Ak} and

Classes C = {c1, c2, . . . c`}

Each class ci defines a probabilistic model for attributes

Pr(A1 = a1, . . . ,Ak = ak | C = ci )

Given a data item d = (a1, a2, . . . , ak), identify the best class c for d

Maximize Pr(C = ci | A1 = a1, . . . ,Ak = ak)
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Generative models

To use probabilities, need to describe how data is randomly generated

Generative model

Typically, assume a random instance is created as follows

Choose a class cj with probability Pr(cj)

Choose attributes a1, . . . , ak with probability Pr(a1, . . . , ak | cj)

Generative model has associated parameters θ = (θ1, . . . , θm)

Each class probability Pr(cj) is a parameter

Each conditional probability Pr(a1, . . . , ak | cj) is a parameter

We need to estimate these parameters
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Maximum Likelihood Estimators

Our goal is to estimate parameters (probabilities) θ = (θ1, . . . , θm)

Law of large numbers allows us to estimate probabilities by counting frequencies

Example: Tossing a biased coin, single parameter θ = Pr(heads)

N coin tosses, H heads and T tails

Why is θ̂ = H/N the best estimate?

Likelihood

Actual coin toss sequence is τ = t1t2 . . . tN

Given an estimate of θ, compute Pr(τ | θ) — likelihood L(θ)

θ̂ = H/N maximizes this likelihood — arg max
θ

L(θ) = θ̂ = H/N

Maximum Likelihood Estimator (MLE)
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Bayesian classification

Maximize Pr(C = ci | A1 = a1, . . . ,Ak = ak)

By Bayes’ rule,

Pr(C = ci | A1 = a1, . . . ,Ak = ak)

=
Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )

Pr(A1 = a1, . . . ,Ak = ak)

=
Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )∑`
j=1 Pr(A1 = a1, . . . ,Ak = ak | C = cj) · Pr(C = cj)

Denominator is the same for all ci , so sufficient to maximize

Pr(A1 = a1, . . . ,Ak = ak | C = ci ) · Pr(C = ci )
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Example

To classify A = g ,B = q

Pr(C = t) = 5/10 = 1/2

Pr(A = g ,B = q | C = t) = 2/5

Pr(A = g ,B = q | C = t) · Pr(C = t) = 1/5

Pr(C = f ) = 5/10 = 1/2

Pr(A = g ,B = q | C = f ) = 1/5

Pr(A = g ,B = q | C = f ) · Pr(C = f ) = 1/10

Hence, predict C = t

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Example . . .

What if we want to classify A = m,B = q?

Pr(A = m,B = q | C = t) = 0

Also Pr(A = m,B = q | C = f ) = 0!

To estimate joint probabilities across all
combinations of attributes, we need a much
larger set of training data

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Näıve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

Pr(A1 = a1, . . . ,Ak = ak | C = ci ) =
k∏

j=1

Pr(Aj = aj | C = ci )

Pr(C = ci ) is fraction of training data with class ci

Pr(Aj = aj | C = ci ) is fraction of training data labelled ci for which Aj = aj

Final classification is

arg max
ci

Pr(C = ci )
k∏

j=1

Pr(Aj = aj | C = ci )
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Näıve Bayes classifier . . .

Conditional independence is not theoretically justified

For instance, text classification

Items are documents, attributes are words (absent or present)

Classes are topics

Conditional independence says that a document is a set of words: ignores
sequence of words

Meaning of words is clearly affected by relative position, ordering

However, naive Bayes classifiers work well in practice, even for text
classification!

Many spam filters are built using this model
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Example revisited

Want to classify A = m,B = q

Pr(A = m,B = q | C = t) = Pr(A = m,B = q | C = f ) = 0

Pr(A = m | C = t) = 2/5

Pr(B = q | C = t) = 2/5

Pr(A = m | C = f ) = 1/5

Pr(B = q | C = f ) = 2/5

Pr(A = m | C = t) · Pr(B = q | C = t) · Pr(C = t) = 2/25

Pr(A = m | C = f ) · Pr(B = q | C = f ) · Pr(C = f ) = 1/25

Hence predict C = t

A B C

m b t

m s t

g q t

h s t

g q t

g q f

g s f

h b f

h q f

m b f
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Zero counts

Suppose A = a never occurs in the test set with C = c

Setting Pr(A = a | C = c) = 0 wipes out any product
k∏

i=1

Pr(Ai = ai | C = c)

in which this term appears

Assume Ai takes mi values {ai1, . . . , aimi
}

“Pad” training data with one sample for each value aj — mi extra data items

Adjust Pr(Ai = ai | C = cj) to
nij + 1

nj + mi

where

nij is number of samples with Ai = ai , C = cj

nj is number of samples with C = cj
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Smoothing

Laplace’s law of succession

Pr(Ai = ai | C = cj) =
nij + 1

nj + mi

More generally, Lidstone’s law of succession, or smoothing

Pr(Ai = ai | C = cj) =
nij + λ

nj + λmi

λ = 1 is Laplace’s law of succession
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Summary

Use Bayes’ Theorem to build a probabilistic classifier

Need to define a generative model, for which frequencies are maximum
likelihood estimators

Näıve Bayes classifiers: simplifying assumption of conditional independence

No theoretical justification

Works well in practice

Overcome zero counts using smoothing
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