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Soft margin optimization
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¢ Constraints include requirement that error
terms are non-negative

e Again the objective function is quadratic
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The non-linear case
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¢ How do we deal with datasets where
the separator is a complex shape?

e Geometrically transform the data

Typically,add dimensions

e Forinstance, if we can "lift" one class,
we can find a planar separator between
levels
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Geometric tranformation
|

¢ Consider two sets of points separated Yy

by a circle of radius 1

e Equationofcircle is

24+ =1

e Points inside the circle 22 + 1% < 1

¢ Points outside circle

¢ Transformation

:r.2+y2>1
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©:(z,y) = (2,9, 2> + %)
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¢ Pointsinsidecircle lie belowz =1

¢ Point outside circle lifted abovez =1
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SVM after transformation

* SVM in original space

sign [Z yio (T - 2) + b]
1ESY

e After transformation
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¢ All we need to know is how to compute
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dot products in transformed space
o
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Dot products

e Considerthe transformation Y
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¢ Transformed dot product can be
expressed in terms of originalinputs

(p(x) - 0(2)) = K(x,2) (1 + 2121 + x225)*
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Kernels

* Kis a kernel fortransformation  if Y

K(x,2) = {p(x) - 9(2)) VERYE
i © \\
¢ |f we have a kernel, we don't need to o e x
explicitly compute transformed points Yo @ i /

¢ All dot products can be computed

implicitly using the kernel on original N 9 e
data points o
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Kernels

* Kis a kernel fortransformation  if

K(z,2) = (p(z) - ¢(2))
¢ |f we have a kernel, we don't need to

explicitly compute transformed points

¢ All dot products can be computed
implicitly using the kernel on original
data points

sign [Z vioi K (zi,2) + b]
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Kernels

e If we know K is a kernel for some
transformation  , we can blindly
use K without even knowing
what ¢ looks like!

e When is a function a valid kernel?

¢ Has been studied in mathematics —
Mercer's Theorem

. Criteria are non-constructive

e Can define sufficient conditionsfrom
linearalgebra
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Kernels
|

* Kernel over trainingdataxy, Ts, ..., TN
can be represented as a gram matrix
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e Entries are values K (r;, ;)

e Gram matrix should be positive semi-
definite forall x1, 2o, ..., TN
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Known kernels

¢ Fortunately, there are many known
kernels

¢ Polynomial kernels

K(z,2) :((7 (o)t

¢ Any K(x,z) representing a similarity
measure

e Gaussian radial basisfunction —

similarity based on inverse exponential

distance

K(z,2) = ezt
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