Appendix A

Lagrangian Methods for
Constrained Optimization

A.1 Regional and functional constraints

Throughout this book we have considered optimization problems that were subject to con-
straints. These include the problem of allocating a finite amounts of bandwidth to maximize
total user benefit (page 17), the social welfare maximization problem (page 129) and the
time of day pricing problem (page 213). We make frequent use of the Lagrangian method to
solve these problems. This appendix provides a tutorial on the method. Take, for example,

Ny
NETWORK : maximize Z wy log -, subject to Az < (',
x>0

r=1

posed on page 271. This is an example of the generic constrained optimization problem:

P maxir)r(lize f(x), subject to g(z) =b.
TE

Here f is to be maximized subject to constraints that are of two types. The constraint x € X
is a regional constraint. For example, it might be # > 0. The constraint g(z) = b is a
functional constraint. Sometimes the functional constraint is an inequality constraint,
like g(x) < b. But if it is, we can always add a slack variable, z, and re-write it as the
equality constraint g(x) + z = b, re-defining the regional constraint as x € X and z > 0.
To illustrate things we shall use the NETWORK problem with just one resource constraint

n n
P maxi;glize Z w; logx;, subject to g x; =Db),
X
= i=1

=1

where b is a positive number.

A.2 The Lagrangian method

The solution of a constrained optimization problem can often be found by using the so-called
Lagrangian method. We define the Lagrangian as

L(z,A) = f(z) + A(b — g(2)).
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For P it is
n n
Li(z,\) = Zwi log z; + A (b — Z%) .
i=1 i=1

In general, the Lagrangian is the sum of the original objective function and a term that
involves the functional constraint and a ‘Lagrange multiplier’ A. Suppose we ignore the
functional constraint and consider the problem of maximizing the Lagrangian, subject only
to the regional constraint. This is often an easier problem than the original one. The value
of z that maximizes L(x, ) depends on the value of A\. Let us denote this optimizing value
of x by z(\).

For example, since Li(x, \) is a concave function of x it has a unique maximum at a
point where f is stationary with respect to changes in z, i.e., where

OL1/0x; = w;/x;i — A =0 foralli.

Thus z;(\) = w;/A. Note that x;(A) > 0 for A > 0, and so the solution lies in the interior
of the feasible set.

Think of A as knob that we can turn to adjust the value of z. Imagine turning this
knob until we find a value of A, say A = \*, such that the functional constraint is satisfied,
ie., g(x(X\*)) = b. Let 2* = x(A*). Our claim is that z* solves P. This is the so-called
Lagrangian Sufficiency Theorem, which we state and prove shortly. First note that, in our
example, g(z(X)) = >, wi/A. Thus choosing \* = >, w;/b, we have g(x(\*)) = b. The
next theorem shows that x = z(A*) = w;b/ >_; w; is optimal for P.

Theorem 5 (Lagrangian Sufficiency Theorem) Suppose there exist ©* € X and \*,
such that * mazimizes L(xz, \*) over all x € X, and g(xz*) = b. Then z* solves P.

Proof.

max f(x) = max [f(z) + A" (b= g(2))
g9(z)=b 9(z)=b

< m%}?[f(x) + A" (b —g(x))]

S
= f(@%) + A" (b—g(z"))]
= f(z")
Equality in the first line holds because we have simply added 0 on the right hand side. The
inequality in the second line holds because we have enlarged the set over which maximization
takes place. In the third line we use the fact that z* maximizes L(z, A\*) and in the fourth

line we use g(z*) = b. But z* is feasible for P, in that it satisfies the regional and functional
constraints. Hence z* is optimal. [ |

Multiple constraints

If g and b are vectors, so that g(x) = b expresses more than one constraint, then we would
write

L(w, X) = f(x) + AT (b - g(x)),
where the vector A now has one component for each constraint. For example, the Lagrangian
for NETWORK is

L(z,\) = in log x, + Z i (Cy — ZAjr:rr — zj)
r=1 J J

where z; is the slack variable for the jth constraint.



A.3 When does the method work? 333

A.3 When does the method work?

The Lagrangian method is based on a ‘sufficiency theorem’. The means that method can
work, but need not work. Our approach is to write down the Lagrangian, maximize it, and
then see if we can choose A and a maximizing x so that the conditions of the Lagrangian
Sufficiency Theorem are satisfied. If this works, then we are happy. If it does not work,
then too bad. We must try to solve our problem some other way. The method worked
for P; because we could find an appropriate A\*. To see that this is so, note that as A
increases from 0 to 0o, g(z(\)) decreases from oo to 0. Moreover, g(z(\)) is continuous in
A. Therefore, given positive b, there must exist a A for which g(z(\)) = b. For this value
of A\, which we denote \*, and for z* = x(A\*) the conditions of the Lagrangian Sufficiency
Theorem are satisfied.
To see that the Lagrangian method does not always work, consider the problem

P, : minimize —z, subject to > 0 and vz = 2.
This cannot be solved by the Lagrangian method. If we minimize
L(z,\) = —x + A2 — V)

over x > 0, we get a minimum value of —oo, no matter what we take as the value of A.
This is clearly not the right answer. So the Lagrangian method fails to work. However, the
method does work for

Py : minimize —z, subject to z > 0 and z? = 16

Now
L(z,\) = —x + \(16 — 2?)

If we take \* = —1/8 then 0L/0x = —1 + x/4 and so z* = 4. Note that P» and P} are
really the same problem, except that the functional constraint is expressed differently. Thus
whether or not the Lagrangian method will work can depend upon how we formulate the
problem.

We can say something more about when the Lagrangian method will work. Let P(b)
be the problem: minimize f(z), such that x € X and g(x) = b. Define ¢(b) as min f(z),
subject to z € X and g(x) = b. Then the Lagrangian method works for P(b*) if and only
if there is a line that is tangent to ¢(b) at b* and lies completely below ¢(b). This happens
if ¢(b) is a convex function of b, but this is a difficult condition to check. A set of sufficient
conditions that are easier to check are provided in the following theorem. These conditions
do not hold in P, as g(x) = /x is not a convex function of z. In Py the sufficient conditions
are met.

Theorem 6 If f and g are convex functions, X is a conver set, and x* is an optimal
solution to P, then there exist Lagrange multipliers X € R™ such that L(xz*,\) < L(z, )
forallx € X.

Remark. Recall that f is a convex function if for all 21,29 € X and 6 € [0, 1], we have
flz1+ (1 —0)z2) <O0f(x1)+ (1 —0)f(z2). X is a convex set if for all x;,22 € X and
0 € [0,1], we have 0z1 + (1 — 0)x2 € X. Furthermore, f is a concave function if —f is
convex.

The proof of the theorem proceeds by showing that ¢(b) is convex. This implies that
for each b* there is a tangent hyperplane to ¢(b) at b* with the graph of ¢(b) lying entirely
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above it. This uses the so-called ‘supporting hyperplane theorem’ for convex sets, which is
geometrically obvious, but some work to prove. Note the equation of the hyperplane will be
y = ¢(b*)+ AT (b—0b*) for some multipliers A. This A can be shown to be the required vector
of Lagrange multipliers and the picture below gives some geometric intuition as to why the
Lagrange multipliers A exist and why these As give the rate of change of the optimum ¢(b)
with b.

feasible (g, f)

¢ (b%)

A.4 Shadow prices

The maximizing x, the appropriate value of A and maximal value of f all depend on b.
What happens if b changes by a small amount? Let the maximizing x be z*(b). Suppose
the Lagrangian method works and let A\*(b) denote the appropriate value of A. As above,
let ¢(b) denote the maximal value of f. We have

¢(b) = f(z"(b)) + A" [b— g(z"(b)] .
So simply differentiating with respect to b, we have

° oz 0
- 0b Ox7

0 % * *
2 506y = LF@" @) + X[ - g (0)]}

’ o o
b ON*

8 * * = * * *
+ optf (@ (0) + Ao — g(z(B)]} + f(@ (b)) + A*[b—g(«"(b)]}
oN*
=0+ N+ [b—g(z"(b)]—=
FA - g () S
where the first term on the right hand side is 0 because L(z, \*) is stationary with respect
to x; at * = 2™ and the third term is zero because b — g(z*(b)) = 0. Thus
0
—o(b) = \*
75 20)
and A can be interpreted as the rate at which the maximized value of f increases with b,
for small increases around b. For this reason, the Lagrange multiplier \* is also called a
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shadow price, the idea being that if b increases to b + § then we should be prepared to
pay A*0 for the increase we receive in f.

It can happen that at the optimum none, one, or several constraints are active. E.g.,
with constraints g1 () < by and ga(z) < be it can happen that at the optimum g1 (z*) = b;
and ga(x*) < by. In this case we will find have \5 = 0. This makes sense. The second
constraint is not limiting the maximization of f and so the shadow price of by is zero.

A.5 The dual problem

By similar reasoning to that we used in the proof of the Lagrangian sufficiency theorem,
we have that for any A
¢(b) = max f(z)
zeX
g9(z)=b
= max [f(z) + A(b — g(2))]
g9(z)=b

< max(f(z) + A(b - g(x))].

The right hand side provides an upper bound on ¢(b). We make this upper bound as tight
as possible by minimizing over A, so that we have

¢(b) < minmax[f(z) + A*(b — g(x))] -

The right hand side above defines an optimization problem, called the dual problem.
The original problem is called the primal problem. If the primal can be solved by the
Lagrangian method then the inequality above is an equality and the solution to the dual
problem is just A*(b). If the primal cannot be solved by the Lagrangian method we will
have a strict inequality, the so-called duality gap.

The dual problem is interesting because it can sometimes be easier to solve, or because
it formulates the problem in an illuminating way. The dual of P; is

inimi og(wi/N) + A [ 6=S wi/A] |
mlnl)\mlze;w og(wi/\) + < Zw/ )

= i=1
where we have inserted x; = w; /), after carrying out the inner maximization over x. This is

a convex function of A. Differentiating with respect to A, one can check that the stationary
point is the maximum, and ), w;/X = b. This gives A, and finally, as before

o(b) = z;w log (Zj - b) .

The dual plays a particularly important role in the theory of linear programming.
A linear program, such

P : maximize ch, subject to x > 0 and Az < b

is one in which both the objective function and constraints are linear. Here x,c € R"”,
b€ R™ and A is a m x n matrix. The dual of P is D.

D : minimize A" b, subject to A >0 and y' A > ¢'

D is another linear program and the dual of D is P. The decision variables in D, i.e.,
AL, - .-, Am, are the Lagrange multipliers for the m constraints expressed by Ax < b in P.
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Reference

For further details on Lagrangian methods of constrained optimization, see the course notes
of Weber (1998).



